Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{xx}{xy}-\frac{yy}{xy}\right)\left(\frac{y}{x}+\frac{x}{y}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
\frac{\frac{xx-yy}{xy}\left(\frac{y}{x}+\frac{x}{y}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-y^{2}}{xy}\left(\frac{y}{x}+\frac{x}{y}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
Do the multiplications in xx-yy.
\frac{\frac{x^{2}-y^{2}}{xy}\left(\frac{yy}{xy}+\frac{xx}{xy}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{y}{x} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{x}{x}.
\frac{\frac{x^{2}-y^{2}}{xy}\left(\frac{yy+xx}{xy}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
Since \frac{yy}{xy} and \frac{xx}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-y^{2}}{xy}\left(\frac{y^{2}+x^{2}}{xy}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
Do the multiplications in yy+xx.
\frac{\frac{x^{2}-y^{2}}{xy}\left(\frac{y^{2}+x^{2}}{xy}-\frac{xy}{xy}\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{xy}{xy}.
\frac{\frac{x^{2}-y^{2}}{xy}\times \frac{y^{2}+x^{2}-xy}{xy}}{\frac{x^{3}+y^{3}}{x^{2}y}}
Since \frac{y^{2}+x^{2}}{xy} and \frac{xy}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}-xy\right)}{xyxy}}{\frac{x^{3}+y^{3}}{x^{2}y}}
Multiply \frac{x^{2}-y^{2}}{xy} times \frac{y^{2}+x^{2}-xy}{xy} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}-xy\right)x^{2}y}{xyxy\left(x^{3}+y^{3}\right)}
Divide \frac{\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}-xy\right)}{xyxy} by \frac{x^{3}+y^{3}}{x^{2}y} by multiplying \frac{\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}-xy\right)}{xyxy} by the reciprocal of \frac{x^{3}+y^{3}}{x^{2}y}.
\frac{\left(x^{2}-y^{2}\right)\left(x^{2}-xy+y^{2}\right)}{y\left(x^{3}+y^{3}\right)}
Cancel out xxy in both numerator and denominator.
\frac{\left(x+y\right)\left(x-y\right)\left(x^{2}-xy+y^{2}\right)}{y\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}
Factor the expressions that are not already factored.
\frac{x-y}{y}
Cancel out \left(x+y\right)\left(x^{2}-xy+y^{2}\right) in both numerator and denominator.
\frac{\left(\frac{xx}{xy}-\frac{yy}{xy}\right)\left(\frac{y}{x}+\frac{x}{y}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
\frac{\frac{xx-yy}{xy}\left(\frac{y}{x}+\frac{x}{y}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-y^{2}}{xy}\left(\frac{y}{x}+\frac{x}{y}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
Do the multiplications in xx-yy.
\frac{\frac{x^{2}-y^{2}}{xy}\left(\frac{yy}{xy}+\frac{xx}{xy}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{y}{x} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{x}{x}.
\frac{\frac{x^{2}-y^{2}}{xy}\left(\frac{yy+xx}{xy}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
Since \frac{yy}{xy} and \frac{xx}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-y^{2}}{xy}\left(\frac{y^{2}+x^{2}}{xy}-1\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
Do the multiplications in yy+xx.
\frac{\frac{x^{2}-y^{2}}{xy}\left(\frac{y^{2}+x^{2}}{xy}-\frac{xy}{xy}\right)}{\frac{x^{3}+y^{3}}{x^{2}y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{xy}{xy}.
\frac{\frac{x^{2}-y^{2}}{xy}\times \frac{y^{2}+x^{2}-xy}{xy}}{\frac{x^{3}+y^{3}}{x^{2}y}}
Since \frac{y^{2}+x^{2}}{xy} and \frac{xy}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}-xy\right)}{xyxy}}{\frac{x^{3}+y^{3}}{x^{2}y}}
Multiply \frac{x^{2}-y^{2}}{xy} times \frac{y^{2}+x^{2}-xy}{xy} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}-xy\right)x^{2}y}{xyxy\left(x^{3}+y^{3}\right)}
Divide \frac{\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}-xy\right)}{xyxy} by \frac{x^{3}+y^{3}}{x^{2}y} by multiplying \frac{\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}-xy\right)}{xyxy} by the reciprocal of \frac{x^{3}+y^{3}}{x^{2}y}.
\frac{\left(x^{2}-y^{2}\right)\left(x^{2}-xy+y^{2}\right)}{y\left(x^{3}+y^{3}\right)}
Cancel out xxy in both numerator and denominator.
\frac{\left(x+y\right)\left(x-y\right)\left(x^{2}-xy+y^{2}\right)}{y\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}
Factor the expressions that are not already factored.
\frac{x-y}{y}
Cancel out \left(x+y\right)\left(x^{2}-xy+y^{2}\right) in both numerator and denominator.