Evaluate
\frac{x}{x-y}
Expand
-\frac{x}{y-x}
Share
Copied to clipboard
\frac{\frac{\frac{xx}{xy}-\frac{yy}{xy}}{\frac{x}{y}+\frac{y}{x}-2}}{1+\frac{y}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
\frac{\frac{\frac{xx-yy}{xy}}{\frac{x}{y}+\frac{y}{x}-2}}{1+\frac{y}{x}}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{x}{y}+\frac{y}{x}-2}}{1+\frac{y}{x}}
Do the multiplications in xx-yy.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{xx}{xy}+\frac{yy}{xy}-2}}{1+\frac{y}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{xx+yy}{xy}-2}}{1+\frac{y}{x}}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{x^{2}+y^{2}}{xy}-2}}{1+\frac{y}{x}}
Do the multiplications in xx+yy.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{x^{2}+y^{2}}{xy}-\frac{2xy}{xy}}}{1+\frac{y}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{xy}{xy}.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{x^{2}+y^{2}-2xy}{xy}}}{1+\frac{y}{x}}
Since \frac{x^{2}+y^{2}}{xy} and \frac{2xy}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(x^{2}-y^{2}\right)xy}{xy\left(x^{2}+y^{2}-2xy\right)}}{1+\frac{y}{x}}
Divide \frac{x^{2}-y^{2}}{xy} by \frac{x^{2}+y^{2}-2xy}{xy} by multiplying \frac{x^{2}-y^{2}}{xy} by the reciprocal of \frac{x^{2}+y^{2}-2xy}{xy}.
\frac{\frac{x^{2}-y^{2}}{x^{2}-2xy+y^{2}}}{1+\frac{y}{x}}
Cancel out xy in both numerator and denominator.
\frac{\frac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^{2}}}{1+\frac{y}{x}}
Factor the expressions that are not already factored in \frac{x^{2}-y^{2}}{x^{2}-2xy+y^{2}}.
\frac{\frac{x+y}{x-y}}{1+\frac{y}{x}}
Cancel out x-y in both numerator and denominator.
\frac{\frac{x+y}{x-y}}{\frac{x}{x}+\frac{y}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\frac{x+y}{x-y}}{\frac{x+y}{x}}
Since \frac{x}{x} and \frac{y}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x+y\right)x}{\left(x-y\right)\left(x+y\right)}
Divide \frac{x+y}{x-y} by \frac{x+y}{x} by multiplying \frac{x+y}{x-y} by the reciprocal of \frac{x+y}{x}.
\frac{x}{x-y}
Cancel out x+y in both numerator and denominator.
\frac{\frac{\frac{xx}{xy}-\frac{yy}{xy}}{\frac{x}{y}+\frac{y}{x}-2}}{1+\frac{y}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
\frac{\frac{\frac{xx-yy}{xy}}{\frac{x}{y}+\frac{y}{x}-2}}{1+\frac{y}{x}}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{x}{y}+\frac{y}{x}-2}}{1+\frac{y}{x}}
Do the multiplications in xx-yy.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{xx}{xy}+\frac{yy}{xy}-2}}{1+\frac{y}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{xx+yy}{xy}-2}}{1+\frac{y}{x}}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{x^{2}+y^{2}}{xy}-2}}{1+\frac{y}{x}}
Do the multiplications in xx+yy.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{x^{2}+y^{2}}{xy}-\frac{2xy}{xy}}}{1+\frac{y}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{xy}{xy}.
\frac{\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{x^{2}+y^{2}-2xy}{xy}}}{1+\frac{y}{x}}
Since \frac{x^{2}+y^{2}}{xy} and \frac{2xy}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(x^{2}-y^{2}\right)xy}{xy\left(x^{2}+y^{2}-2xy\right)}}{1+\frac{y}{x}}
Divide \frac{x^{2}-y^{2}}{xy} by \frac{x^{2}+y^{2}-2xy}{xy} by multiplying \frac{x^{2}-y^{2}}{xy} by the reciprocal of \frac{x^{2}+y^{2}-2xy}{xy}.
\frac{\frac{x^{2}-y^{2}}{x^{2}-2xy+y^{2}}}{1+\frac{y}{x}}
Cancel out xy in both numerator and denominator.
\frac{\frac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^{2}}}{1+\frac{y}{x}}
Factor the expressions that are not already factored in \frac{x^{2}-y^{2}}{x^{2}-2xy+y^{2}}.
\frac{\frac{x+y}{x-y}}{1+\frac{y}{x}}
Cancel out x-y in both numerator and denominator.
\frac{\frac{x+y}{x-y}}{\frac{x}{x}+\frac{y}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\frac{x+y}{x-y}}{\frac{x+y}{x}}
Since \frac{x}{x} and \frac{y}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x+y\right)x}{\left(x-y\right)\left(x+y\right)}
Divide \frac{x+y}{x-y} by \frac{x+y}{x} by multiplying \frac{x+y}{x-y} by the reciprocal of \frac{x+y}{x}.
\frac{x}{x-y}
Cancel out x+y in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}