Evaluate
\frac{\left(xy\right)^{2}}{x^{2}-y^{2}}
Expand
\frac{\left(xy\right)^{2}}{x^{2}-y^{2}}
Share
Copied to clipboard
\frac{\frac{x-2y}{x-y}\times \frac{xy}{x-2y}}{\frac{1}{x}+\frac{1}{y}}
Since \frac{x}{x-y} and \frac{2y}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(x-2y\right)xy}{\left(x-y\right)\left(x-2y\right)}}{\frac{1}{x}+\frac{1}{y}}
Multiply \frac{x-2y}{x-y} times \frac{xy}{x-2y} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{xy}{x-y}}{\frac{1}{x}+\frac{1}{y}}
Cancel out x-2y in both numerator and denominator.
\frac{\frac{xy}{x-y}}{\frac{y}{xy}+\frac{x}{xy}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{1}{x} times \frac{y}{y}. Multiply \frac{1}{y} times \frac{x}{x}.
\frac{\frac{xy}{x-y}}{\frac{y+x}{xy}}
Since \frac{y}{xy} and \frac{x}{xy} have the same denominator, add them by adding their numerators.
\frac{xyxy}{\left(x-y\right)\left(y+x\right)}
Divide \frac{xy}{x-y} by \frac{y+x}{xy} by multiplying \frac{xy}{x-y} by the reciprocal of \frac{y+x}{xy}.
\frac{x^{2}yy}{\left(x-y\right)\left(y+x\right)}
Multiply x and x to get x^{2}.
\frac{x^{2}y^{2}}{\left(x-y\right)\left(y+x\right)}
Multiply y and y to get y^{2}.
\frac{x^{2}y^{2}}{x^{2}-y^{2}}
Consider \left(x-y\right)\left(y+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{x-2y}{x-y}\times \frac{xy}{x-2y}}{\frac{1}{x}+\frac{1}{y}}
Since \frac{x}{x-y} and \frac{2y}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(x-2y\right)xy}{\left(x-y\right)\left(x-2y\right)}}{\frac{1}{x}+\frac{1}{y}}
Multiply \frac{x-2y}{x-y} times \frac{xy}{x-2y} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{xy}{x-y}}{\frac{1}{x}+\frac{1}{y}}
Cancel out x-2y in both numerator and denominator.
\frac{\frac{xy}{x-y}}{\frac{y}{xy}+\frac{x}{xy}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{1}{x} times \frac{y}{y}. Multiply \frac{1}{y} times \frac{x}{x}.
\frac{\frac{xy}{x-y}}{\frac{y+x}{xy}}
Since \frac{y}{xy} and \frac{x}{xy} have the same denominator, add them by adding their numerators.
\frac{xyxy}{\left(x-y\right)\left(y+x\right)}
Divide \frac{xy}{x-y} by \frac{y+x}{xy} by multiplying \frac{xy}{x-y} by the reciprocal of \frac{y+x}{xy}.
\frac{x^{2}yy}{\left(x-y\right)\left(y+x\right)}
Multiply x and x to get x^{2}.
\frac{x^{2}y^{2}}{\left(x-y\right)\left(y+x\right)}
Multiply y and y to get y^{2}.
\frac{x^{2}y^{2}}{x^{2}-y^{2}}
Consider \left(x-y\right)\left(y+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}