( \frac { x } { x ^ { 2 } - 2 x + 1 } - \frac { x + 1 } { x ^ { 2 } - x } \div \frac { 1 } { x - 1 }
Evaluate
\frac{-x^{3}+2x^{2}+x-1}{x\left(x-1\right)^{2}}
Expand
\frac{-x^{3}+2x^{2}+x-1}{x\left(x^{2}-2x+1\right)}
Graph
Share
Copied to clipboard
\frac{x}{x^{2}-2x+1}-\frac{\left(x+1\right)\left(x-1\right)}{x^{2}-x}
Divide \frac{x+1}{x^{2}-x} by \frac{1}{x-1} by multiplying \frac{x+1}{x^{2}-x} by the reciprocal of \frac{1}{x-1}.
\frac{x}{x^{2}-2x+1}-\frac{\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)}
Factor the expressions that are not already factored in \frac{\left(x+1\right)\left(x-1\right)}{x^{2}-x}.
\frac{x}{x^{2}-2x+1}-\frac{x+1}{x}
Cancel out x-1 in both numerator and denominator.
\frac{x}{\left(x-1\right)^{2}}-\frac{x+1}{x}
Factor x^{2}-2x+1.
\frac{xx}{x\left(x-1\right)^{2}}-\frac{\left(x+1\right)\left(x-1\right)^{2}}{x\left(x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)^{2} and x is x\left(x-1\right)^{2}. Multiply \frac{x}{\left(x-1\right)^{2}} times \frac{x}{x}. Multiply \frac{x+1}{x} times \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}}.
\frac{xx-\left(x+1\right)\left(x-1\right)^{2}}{x\left(x-1\right)^{2}}
Since \frac{xx}{x\left(x-1\right)^{2}} and \frac{\left(x+1\right)\left(x-1\right)^{2}}{x\left(x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x^{3}+2x^{2}-x-x^{2}+2x-1}{x\left(x-1\right)^{2}}
Do the multiplications in xx-\left(x+1\right)\left(x-1\right)^{2}.
\frac{2x^{2}-x^{3}+x-1}{x\left(x-1\right)^{2}}
Combine like terms in x^{2}-x^{3}+2x^{2}-x-x^{2}+2x-1.
\frac{2x^{2}-x^{3}+x-1}{x^{3}-2x^{2}+x}
Expand x\left(x-1\right)^{2}.
\frac{x}{x^{2}-2x+1}-\frac{\left(x+1\right)\left(x-1\right)}{x^{2}-x}
Divide \frac{x+1}{x^{2}-x} by \frac{1}{x-1} by multiplying \frac{x+1}{x^{2}-x} by the reciprocal of \frac{1}{x-1}.
\frac{x}{x^{2}-2x+1}-\frac{\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)}
Factor the expressions that are not already factored in \frac{\left(x+1\right)\left(x-1\right)}{x^{2}-x}.
\frac{x}{x^{2}-2x+1}-\frac{x+1}{x}
Cancel out x-1 in both numerator and denominator.
\frac{x}{\left(x-1\right)^{2}}-\frac{x+1}{x}
Factor x^{2}-2x+1.
\frac{xx}{x\left(x-1\right)^{2}}-\frac{\left(x+1\right)\left(x-1\right)^{2}}{x\left(x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)^{2} and x is x\left(x-1\right)^{2}. Multiply \frac{x}{\left(x-1\right)^{2}} times \frac{x}{x}. Multiply \frac{x+1}{x} times \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}}.
\frac{xx-\left(x+1\right)\left(x-1\right)^{2}}{x\left(x-1\right)^{2}}
Since \frac{xx}{x\left(x-1\right)^{2}} and \frac{\left(x+1\right)\left(x-1\right)^{2}}{x\left(x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x^{3}+2x^{2}-x-x^{2}+2x-1}{x\left(x-1\right)^{2}}
Do the multiplications in xx-\left(x+1\right)\left(x-1\right)^{2}.
\frac{2x^{2}-x^{3}+x-1}{x\left(x-1\right)^{2}}
Combine like terms in x^{2}-x^{3}+2x^{2}-x-x^{2}+2x-1.
\frac{2x^{2}-x^{3}+x-1}{x^{3}-2x^{2}+x}
Expand x\left(x-1\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}