Solve for x
x=6
Graph
Share
Copied to clipboard
\left(\frac{x}{6}\right)^{2}+10\times \frac{x}{6}+25-\left(\frac{x}{6}-5\right)^{2}=20
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{x}{6}+5\right)^{2}.
\frac{x^{2}}{6^{2}}+10\times \frac{x}{6}+25-\left(\frac{x}{6}-5\right)^{2}=20
To raise \frac{x}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{6^{2}}+\frac{10x}{6}+25-\left(\frac{x}{6}-5\right)^{2}=20
Express 10\times \frac{x}{6} as a single fraction.
\frac{x^{2}}{36}+\frac{6\times 10x}{36}+25-\left(\frac{x}{6}-5\right)^{2}=20
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6^{2} and 6 is 36. Multiply \frac{10x}{6} times \frac{6}{6}.
\frac{x^{2}+6\times 10x}{36}+25-\left(\frac{x}{6}-5\right)^{2}=20
Since \frac{x^{2}}{36} and \frac{6\times 10x}{36} have the same denominator, add them by adding their numerators.
\frac{x^{2}+60x}{36}+25-\left(\frac{x}{6}-5\right)^{2}=20
Do the multiplications in x^{2}+6\times 10x.
\frac{x^{2}+60x}{36}+25-\left(\left(\frac{x}{6}\right)^{2}-10\times \frac{x}{6}+25\right)=20
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{x}{6}-5\right)^{2}.
\frac{x^{2}+60x}{36}+25-\left(\frac{x^{2}}{6^{2}}-10\times \frac{x}{6}+25\right)=20
To raise \frac{x}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}+60x}{36}+25-\left(\frac{x^{2}}{6^{2}}+\frac{-10x}{6}+25\right)=20
Express -10\times \frac{x}{6} as a single fraction.
\frac{x^{2}+60x}{36}+25-\left(\frac{x^{2}}{36}+\frac{6\left(-1\right)\times 10x}{36}+25\right)=20
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6^{2} and 6 is 36. Multiply \frac{-10x}{6} times \frac{6}{6}.
\frac{x^{2}+60x}{36}+25-\left(\frac{x^{2}+6\left(-1\right)\times 10x}{36}+25\right)=20
Since \frac{x^{2}}{36} and \frac{6\left(-1\right)\times 10x}{36} have the same denominator, add them by adding their numerators.
\frac{x^{2}+60x}{36}+25-\left(\frac{x^{2}-60x}{36}+25\right)=20
Do the multiplications in x^{2}+6\left(-1\right)\times 10x.
\frac{x^{2}+60x}{36}+25-\frac{x^{2}-60x}{36}-25=20
To find the opposite of \frac{x^{2}-60x}{36}+25, find the opposite of each term.
\frac{x^{2}+60x}{36}-\frac{x^{2}-60x}{36}=20
Subtract 25 from 25 to get 0.
\frac{x^{2}+60x-\left(x^{2}-60x\right)}{36}=20
Since \frac{x^{2}+60x}{36} and \frac{x^{2}-60x}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+60x-x^{2}+60x}{36}=20
Do the multiplications in x^{2}+60x-\left(x^{2}-60x\right).
\frac{120x}{36}=20
Combine like terms in x^{2}+60x-x^{2}+60x.
\frac{10}{3}x=20
Divide 120x by 36 to get \frac{10}{3}x.
x=20\times \frac{3}{10}
Multiply both sides by \frac{3}{10}, the reciprocal of \frac{10}{3}.
x=6
Multiply 20 and \frac{3}{10} to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}