Evaluate
\frac{x^{2}}{25}-36
Expand
\frac{x^{2}}{25}-36
Graph
Share
Copied to clipboard
\left(\frac{x}{5}+\frac{6\times 5}{5}\right)\left(\frac{x}{5}-6\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{5}{5}.
\frac{x+6\times 5}{5}\left(\frac{x}{5}-6\right)
Since \frac{x}{5} and \frac{6\times 5}{5} have the same denominator, add them by adding their numerators.
\frac{x+30}{5}\left(\frac{x}{5}-6\right)
Do the multiplications in x+6\times 5.
\frac{x+30}{5}\left(\frac{x}{5}-\frac{6\times 5}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{5}{5}.
\frac{x+30}{5}\times \frac{x-6\times 5}{5}
Since \frac{x}{5} and \frac{6\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{x+30}{5}\times \frac{x-30}{5}
Do the multiplications in x-6\times 5.
\frac{\left(x+30\right)\left(x-30\right)}{5\times 5}
Multiply \frac{x+30}{5} times \frac{x-30}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+30\right)\left(x-30\right)}{25}
Multiply 5 and 5 to get 25.
\frac{x^{2}-30^{2}}{25}
Consider \left(x+30\right)\left(x-30\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}-900}{25}
Calculate 30 to the power of 2 and get 900.
\left(\frac{x}{5}+\frac{6\times 5}{5}\right)\left(\frac{x}{5}-6\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{5}{5}.
\frac{x+6\times 5}{5}\left(\frac{x}{5}-6\right)
Since \frac{x}{5} and \frac{6\times 5}{5} have the same denominator, add them by adding their numerators.
\frac{x+30}{5}\left(\frac{x}{5}-6\right)
Do the multiplications in x+6\times 5.
\frac{x+30}{5}\left(\frac{x}{5}-\frac{6\times 5}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{5}{5}.
\frac{x+30}{5}\times \frac{x-6\times 5}{5}
Since \frac{x}{5} and \frac{6\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{x+30}{5}\times \frac{x-30}{5}
Do the multiplications in x-6\times 5.
\frac{\left(x+30\right)\left(x-30\right)}{5\times 5}
Multiply \frac{x+30}{5} times \frac{x-30}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+30\right)\left(x-30\right)}{25}
Multiply 5 and 5 to get 25.
\frac{x^{2}-30^{2}}{25}
Consider \left(x+30\right)\left(x-30\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}-900}{25}
Calculate 30 to the power of 2 and get 900.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}