Solve for x
x=12
Graph
Share
Copied to clipboard
15x-180+10\times 5x-15\times 5x=12\left(x-12\right)-20\left(x+3\right)
Multiply both sides of the equation by 60, the least common multiple of 4,6,5,3.
15x-180+50x-15\times 5x=12\left(x-12\right)-20\left(x+3\right)
Multiply 10 and 5 to get 50.
65x-180-15\times 5x=12\left(x-12\right)-20\left(x+3\right)
Combine 15x and 50x to get 65x.
65x-180-75x=12\left(x-12\right)-20\left(x+3\right)
Multiply -15 and 5 to get -75.
-10x-180=12\left(x-12\right)-20\left(x+3\right)
Combine 65x and -75x to get -10x.
-10x-180=12x-144-20\left(x+3\right)
Use the distributive property to multiply 12 by x-12.
-10x-180=12x-144-20x-60
Use the distributive property to multiply -20 by x+3.
-10x-180=-8x-144-60
Combine 12x and -20x to get -8x.
-10x-180=-8x-204
Subtract 60 from -144 to get -204.
-10x-180+8x=-204
Add 8x to both sides.
-2x-180=-204
Combine -10x and 8x to get -2x.
-2x=-204+180
Add 180 to both sides.
-2x=-24
Add -204 and 180 to get -24.
x=\frac{-24}{-2}
Divide both sides by -2.
x=12
Divide -24 by -2 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}