Solve for y
y=0
Solve for x (complex solution)
x\in \mathrm{C}
y=0
Solve for x
x\in \mathrm{R}
y=0
Graph
Share
Copied to clipboard
72\left(\frac{x}{24}+\frac{1}{9}y\right)-72\left(\frac{x}{24}+\frac{y}{36}\right)=72-72
Multiply both sides of the equation by 72, the least common multiple of 24,9,36.
72\times \frac{x}{24}+8y-72\left(\frac{x}{24}+\frac{y}{36}\right)=72-72
Use the distributive property to multiply 72 by \frac{x}{24}+\frac{1}{9}y.
3x+8y-72\left(\frac{x}{24}+\frac{y}{36}\right)=72-72
Cancel out 24, the greatest common factor in 72 and 24.
3x+8y-72\left(\frac{3x}{72}+\frac{2y}{72}\right)=72-72
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 24 and 36 is 72. Multiply \frac{x}{24} times \frac{3}{3}. Multiply \frac{y}{36} times \frac{2}{2}.
3x+8y-72\times \frac{3x+2y}{72}=72-72
Since \frac{3x}{72} and \frac{2y}{72} have the same denominator, add them by adding their numerators.
3x+8y-\frac{72\left(3x+2y\right)}{72}=72-72
Express 72\times \frac{3x+2y}{72} as a single fraction.
3x+8y-\left(3x+2y\right)=72-72
Cancel out 72 and 72.
3x+8y-3x-2y=72-72
To find the opposite of 3x+2y, find the opposite of each term.
8y-2y=72-72
Combine 3x and -3x to get 0.
6y=72-72
Combine 8y and -2y to get 6y.
6y=0
Subtract 72 from 72 to get 0.
y=0
Product of two numbers is equal to 0 if at least one of them is 0. Since 6 is not equal to 0, y must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}