Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(\frac{x}{2}-t\right)^{2}\left(\frac{x}{2}+t\right)^{2}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Multiply both sides of the equation by 4, the least common multiple of 2,4.
4\left(\left(\frac{x}{2}\right)^{2}-2\times \frac{x}{2}t+t^{2}\right)\left(\frac{x}{2}+t\right)^{2}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{x}{2}-t\right)^{2}.
4\left(\frac{x^{2}}{2^{2}}-2\times \frac{x}{2}t+t^{2}\right)\left(\frac{x}{2}+t\right)^{2}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
4\left(\frac{x^{2}}{2^{2}}+\frac{-2x}{2}t+t^{2}\right)\left(\frac{x}{2}+t\right)^{2}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Express -2\times \frac{x}{2} as a single fraction.
4\left(\frac{x^{2}}{2^{2}}-xt+t^{2}\right)\left(\frac{x}{2}+t\right)^{2}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Cancel out 2 and 2.
4\left(\frac{x^{2}}{2^{2}}+\frac{\left(-xt+t^{2}\right)\times 2^{2}}{2^{2}}\right)\left(\frac{x}{2}+t\right)^{2}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -xt+t^{2} times \frac{2^{2}}{2^{2}}.
4\times \frac{x^{2}+\left(-xt+t^{2}\right)\times 2^{2}}{2^{2}}\left(\frac{x}{2}+t\right)^{2}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Since \frac{x^{2}}{2^{2}} and \frac{\left(-xt+t^{2}\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
4\times \frac{x^{2}-4xt+4t^{2}}{2^{2}}\left(\frac{x}{2}+t\right)^{2}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Do the multiplications in x^{2}+\left(-xt+t^{2}\right)\times 2^{2}.
4\times \frac{x^{2}-4xt+4t^{2}}{2^{2}}\left(\left(\frac{x}{2}\right)^{2}+2\times \frac{x}{2}t+t^{2}\right)-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{x}{2}+t\right)^{2}.
4\times \frac{x^{2}-4xt+4t^{2}}{2^{2}}\left(\frac{x^{2}}{2^{2}}+2\times \frac{x}{2}t+t^{2}\right)-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
4\times \frac{x^{2}-4xt+4t^{2}}{2^{2}}\left(\frac{x^{2}}{2^{2}}+\frac{2x}{2}t+t^{2}\right)-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Express 2\times \frac{x}{2} as a single fraction.
4\times \frac{x^{2}-4xt+4t^{2}}{2^{2}}\left(\frac{x^{2}}{2^{2}}+xt+t^{2}\right)-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Cancel out 2 and 2.
4\times \frac{x^{2}-4xt+4t^{2}}{2^{2}}\left(\frac{x^{2}}{2^{2}}+\frac{\left(xt+t^{2}\right)\times 2^{2}}{2^{2}}\right)-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply xt+t^{2} times \frac{2^{2}}{2^{2}}.
4\times \frac{x^{2}-4xt+4t^{2}}{2^{2}}\times \frac{x^{2}+\left(xt+t^{2}\right)\times 2^{2}}{2^{2}}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Since \frac{x^{2}}{2^{2}} and \frac{\left(xt+t^{2}\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
4\times \frac{x^{2}-4xt+4t^{2}}{2^{2}}\times \frac{x^{2}+4xt+4t^{2}}{2^{2}}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Do the multiplications in x^{2}+\left(xt+t^{2}\right)\times 2^{2}.
\frac{4\left(x^{2}-4xt+4t^{2}\right)}{2^{2}}\times \frac{x^{2}+4xt+4t^{2}}{2^{2}}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Express 4\times \frac{x^{2}-4xt+4t^{2}}{2^{2}} as a single fraction.
\frac{4\left(x^{2}-4xt+4t^{2}\right)\left(x^{2}+4xt+4t^{2}\right)}{2^{2}\times 2^{2}}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-2\left(1-tx\right)\left(2-tx\right)
Multiply \frac{4\left(x^{2}-4xt+4t^{2}\right)}{2^{2}} times \frac{x^{2}+4xt+4t^{2}}{2^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(x^{2}-4xt+4t^{2}\right)\left(x^{2}+4xt+4t^{2}\right)}{2^{2}\times 2^{2}}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=\left(-2+2tx\right)\left(2-tx\right)
Use the distributive property to multiply -2 by 1-tx.
\frac{4\left(x^{2}-4xt+4t^{2}\right)\left(x^{2}+4xt+4t^{2}\right)}{2^{2}\times 2^{2}}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-4+6tx-2t^{2}x^{2}
Use the distributive property to multiply -2+2tx by 2-tx and combine like terms.
\frac{4\left(x^{2}-4xt+4t^{2}\right)\left(x^{2}+4xt+4t^{2}\right)}{2^{4}}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-4+6tx-2t^{2}x^{2}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{4\left(x^{2}-4xt+4t^{2}\right)\left(x^{2}+4xt+4t^{2}\right)}{16}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-4+6tx-2t^{2}x^{2}
Calculate 2 to the power of 4 and get 16.
\frac{1}{4}\left(x^{2}-4xt+4t^{2}\right)\left(x^{2}+4xt+4t^{2}\right)-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-4+6tx-2t^{2}x^{2}
Divide 4\left(x^{2}-4xt+4t^{2}\right)\left(x^{2}+4xt+4t^{2}\right) by 16 to get \frac{1}{4}\left(x^{2}-4xt+4t^{2}\right)\left(x^{2}+4xt+4t^{2}\right).
\left(\frac{1}{4}x^{2}-xt+t^{2}\right)\left(x^{2}+4xt+4t^{2}\right)-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-4+6tx-2t^{2}x^{2}
Use the distributive property to multiply \frac{1}{4} by x^{2}-4xt+4t^{2}.
\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)=-4+6tx-2t^{2}x^{2}
Use the distributive property to multiply \frac{1}{4}x^{2}-xt+t^{2} by x^{2}+4xt+4t^{2} and combine like terms.
\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)-6tx=-4-2t^{2}x^{2}
Subtract 6tx from both sides.
\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)-6tx+2t^{2}x^{2}=-4
Add 2t^{2}x^{2} to both sides.
4\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)\right)-24tx+8t^{2}x^{2}=-16
Multiply both sides of the equation by 4, the least common multiple of 4,2.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-4\left(\frac{x}{2}-t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)\right)-96tx+32t^{2}x^{2}=-64
Multiply both sides of the equation by 4, the least common multiple of 4,2.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}+\left(-4\times \frac{x}{2}+4t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)\right)-96tx+32t^{2}x^{2}=-64
Use the distributive property to multiply -4 by \frac{x}{2}-t.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}+\left(-2x+4t\right)\left(\frac{x}{2}+t\right)\left(\frac{x^{2}}{4}+t^{2}\right)\right)-96tx+32t^{2}x^{2}=-64
Cancel out 2, the greatest common factor in 4 and 2.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}+\left(-2x\times \frac{x}{2}-2xt+4t\times \frac{x}{2}+4t^{2}\right)\left(\frac{x^{2}}{4}+t^{2}\right)\right)-96tx+32t^{2}x^{2}=-64
Use the distributive property to multiply -2x+4t by \frac{x}{2}+t.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}+\left(\frac{-2x}{2}x-2xt+4t\times \frac{x}{2}+4t^{2}\right)\left(\frac{x^{2}}{4}+t^{2}\right)\right)-96tx+32t^{2}x^{2}=-64
Express -2\times \frac{x}{2} as a single fraction.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}+\left(-xx-2xt+4t\times \frac{x}{2}+4t^{2}\right)\left(\frac{x^{2}}{4}+t^{2}\right)\right)-96tx+32t^{2}x^{2}=-64
Cancel out 2 and 2.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}+\left(-xx-2xt+2xt+4t^{2}\right)\left(\frac{x^{2}}{4}+t^{2}\right)\right)-96tx+32t^{2}x^{2}=-64
Cancel out 2, the greatest common factor in 4 and 2.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}+\left(-xx+4t^{2}\right)\left(\frac{x^{2}}{4}+t^{2}\right)\right)-96tx+32t^{2}x^{2}=-64
Combine -2xt and 2xt to get 0.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-\frac{x^{2}}{4}x^{2}-t^{2}x^{2}+4t^{2}\times \frac{x^{2}}{4}+4t^{4}\right)-96tx+32t^{2}x^{2}=-64
Use the distributive property to multiply -xx+4t^{2} by \frac{x^{2}}{4}+t^{2}.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-\frac{x^{2}x^{2}}{4}-t^{2}x^{2}+4t^{2}\times \frac{x^{2}}{4}+4t^{4}\right)-96tx+32t^{2}x^{2}=-64
Express \frac{x^{2}}{4}x^{2} as a single fraction.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-\frac{x^{2}x^{2}}{4}-t^{2}x^{2}+\frac{4x^{2}}{4}t^{2}+4t^{4}\right)-96tx+32t^{2}x^{2}=-64
Express 4\times \frac{x^{2}}{4} as a single fraction.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-\frac{x^{2}x^{2}}{4}-t^{2}x^{2}+x^{2}t^{2}+4t^{4}\right)-96tx+32t^{2}x^{2}=-64
Cancel out 4 and 4.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-\frac{x^{2}x^{2}}{4}+4t^{4}\right)-96tx+32t^{2}x^{2}=-64
Combine -t^{2}x^{2} and x^{2}t^{2} to get 0.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+4t^{4}-\frac{x^{4}}{4}+4t^{4}\right)-96tx+32t^{2}x^{2}=-64
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
16\left(\frac{1}{4}x^{4}-2x^{2}t^{2}+8t^{4}-\frac{x^{4}}{4}\right)-96tx+32t^{2}x^{2}=-64
Combine 4t^{4} and 4t^{4} to get 8t^{4}.
4x^{4}-32x^{2}t^{2}+128t^{4}-16\times \frac{x^{4}}{4}-96tx+32t^{2}x^{2}=-64
Use the distributive property to multiply 16 by \frac{1}{4}x^{4}-2x^{2}t^{2}+8t^{4}-\frac{x^{4}}{4}.
4x^{4}-32x^{2}t^{2}+128t^{4}-4x^{4}-96tx+32t^{2}x^{2}=-64
Cancel out 4, the greatest common factor in 16 and 4.
-32x^{2}t^{2}+128t^{4}-96tx+32t^{2}x^{2}=-64
Combine 4x^{4} and -4x^{4} to get 0.
128t^{4}-96tx=-64
Combine -32x^{2}t^{2} and 32t^{2}x^{2} to get 0.
-96tx=-64-128t^{4}
Subtract 128t^{4} from both sides.
\left(-96t\right)x=-128t^{4}-64
The equation is in standard form.
\frac{\left(-96t\right)x}{-96t}=\frac{-128t^{4}-64}{-96t}
Divide both sides by -96t.
x=\frac{-128t^{4}-64}{-96t}
Dividing by -96t undoes the multiplication by -96t.
x=\frac{4t^{3}}{3}+\frac{2}{3t}
Divide -64-128t^{4} by -96t.