Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x}{2}-\frac{3\times 2}{2}\right)\left(\frac{x}{2}+3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{x-3\times 2}{2}\left(\frac{x}{2}+3\right)
Since \frac{x}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{x-6}{2}\left(\frac{x}{2}+3\right)
Do the multiplications in x-3\times 2.
\frac{x-6}{2}\left(\frac{x}{2}+\frac{3\times 2}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{x-6}{2}\times \frac{x+3\times 2}{2}
Since \frac{x}{2} and \frac{3\times 2}{2} have the same denominator, add them by adding their numerators.
\frac{x-6}{2}\times \frac{x+6}{2}
Do the multiplications in x+3\times 2.
\frac{\left(x-6\right)\left(x+6\right)}{2\times 2}
Multiply \frac{x-6}{2} times \frac{x+6}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-6\right)\left(x+6\right)}{4}
Multiply 2 and 2 to get 4.
\frac{x^{2}-6^{2}}{4}
Consider \left(x-6\right)\left(x+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}-36}{4}
Calculate 6 to the power of 2 and get 36.
\left(\frac{x}{2}-\frac{3\times 2}{2}\right)\left(\frac{x}{2}+3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{x-3\times 2}{2}\left(\frac{x}{2}+3\right)
Since \frac{x}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{x-6}{2}\left(\frac{x}{2}+3\right)
Do the multiplications in x-3\times 2.
\frac{x-6}{2}\left(\frac{x}{2}+\frac{3\times 2}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{x-6}{2}\times \frac{x+3\times 2}{2}
Since \frac{x}{2} and \frac{3\times 2}{2} have the same denominator, add them by adding their numerators.
\frac{x-6}{2}\times \frac{x+6}{2}
Do the multiplications in x+3\times 2.
\frac{\left(x-6\right)\left(x+6\right)}{2\times 2}
Multiply \frac{x-6}{2} times \frac{x+6}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-6\right)\left(x+6\right)}{4}
Multiply 2 and 2 to get 4.
\frac{x^{2}-6^{2}}{4}
Consider \left(x-6\right)\left(x+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}-36}{4}
Calculate 6 to the power of 2 and get 36.