Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}}{2^{2}}+2=\left(\frac{\sqrt{3}x}{2}\right)^{2}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{2^{2}}+\frac{2\times 2^{2}}{2^{2}}=\left(\frac{\sqrt{3}x}{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2^{2}}{2^{2}}.
\frac{x^{2}+2\times 2^{2}}{2^{2}}=\left(\frac{\sqrt{3}x}{2}\right)^{2}
Since \frac{x^{2}}{2^{2}} and \frac{2\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+8}{2^{2}}=\left(\frac{\sqrt{3}x}{2}\right)^{2}
Do the multiplications in x^{2}+2\times 2^{2}.
\frac{x^{2}+8}{2^{2}}=\frac{\left(\sqrt{3}x\right)^{2}}{2^{2}}
To raise \frac{\sqrt{3}x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}+8}{4}=\frac{\left(\sqrt{3}x\right)^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}x^{2}+2=\frac{\left(\sqrt{3}x\right)^{2}}{2^{2}}
Divide each term of x^{2}+8 by 4 to get \frac{1}{4}x^{2}+2.
\frac{1}{4}x^{2}+2=\frac{\left(\sqrt{3}\right)^{2}x^{2}}{2^{2}}
Expand \left(\sqrt{3}x\right)^{2}.
\frac{1}{4}x^{2}+2=\frac{3x^{2}}{2^{2}}
The square of \sqrt{3} is 3.
\frac{1}{4}x^{2}+2=\frac{3x^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}x^{2}+2-\frac{3x^{2}}{4}=0
Subtract \frac{3x^{2}}{4} from both sides.
\frac{1}{4}x^{2}-\frac{3x^{2}}{4}=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
1x^{2}-3x^{2}=-8
Multiply both sides of the equation by 4.
-3x^{2}+x^{2}=-8
Reorder the terms.
-2x^{2}=-8
Combine -3x^{2} and x^{2} to get -2x^{2}.
x^{2}=\frac{-8}{-2}
Divide both sides by -2.
x^{2}=4
Divide -8 by -2 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
\frac{x^{2}}{2^{2}}+2=\left(\frac{\sqrt{3}x}{2}\right)^{2}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{2^{2}}+\frac{2\times 2^{2}}{2^{2}}=\left(\frac{\sqrt{3}x}{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2^{2}}{2^{2}}.
\frac{x^{2}+2\times 2^{2}}{2^{2}}=\left(\frac{\sqrt{3}x}{2}\right)^{2}
Since \frac{x^{2}}{2^{2}} and \frac{2\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+8}{2^{2}}=\left(\frac{\sqrt{3}x}{2}\right)^{2}
Do the multiplications in x^{2}+2\times 2^{2}.
\frac{x^{2}+8}{2^{2}}=\frac{\left(\sqrt{3}x\right)^{2}}{2^{2}}
To raise \frac{\sqrt{3}x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}+8}{4}=\frac{\left(\sqrt{3}x\right)^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}x^{2}+2=\frac{\left(\sqrt{3}x\right)^{2}}{2^{2}}
Divide each term of x^{2}+8 by 4 to get \frac{1}{4}x^{2}+2.
\frac{1}{4}x^{2}+2=\frac{\left(\sqrt{3}\right)^{2}x^{2}}{2^{2}}
Expand \left(\sqrt{3}x\right)^{2}.
\frac{1}{4}x^{2}+2=\frac{3x^{2}}{2^{2}}
The square of \sqrt{3} is 3.
\frac{1}{4}x^{2}+2=\frac{3x^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}x^{2}+2-\frac{3x^{2}}{4}=0
Subtract \frac{3x^{2}}{4} from both sides.
1x^{2}+8-3x^{2}=0
Multiply both sides of the equation by 4.
-3x^{2}+x^{2}+8=0
Reorder the terms.
-2x^{2}+8=0
Combine -3x^{2} and x^{2} to get -2x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 8}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 0 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\times 8}}{2\left(-2\right)}
Square 0.
x=\frac{0±\sqrt{8\times 8}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{0±\sqrt{64}}{2\left(-2\right)}
Multiply 8 times 8.
x=\frac{0±8}{2\left(-2\right)}
Take the square root of 64.
x=\frac{0±8}{-4}
Multiply 2 times -2.
x=-2
Now solve the equation x=\frac{0±8}{-4} when ± is plus. Divide 8 by -4.
x=2
Now solve the equation x=\frac{0±8}{-4} when ± is minus. Divide -8 by -4.
x=-2 x=2
The equation is now solved.