Solve for x
x=2\sqrt{2}\approx 2.828427125
x=-2\sqrt{2}\approx -2.828427125
x = -\frac{2 \sqrt{10}}{5} \approx -1.264911064
x = \frac{2 \sqrt{10}}{5} \approx 1.264911064
Graph
Share
Copied to clipboard
\frac{x^{2}}{2^{2}}+\left(x-\frac{4}{x}\right)^{2}=4
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{2^{2}}+\left(\frac{xx}{x}-\frac{4}{x}\right)^{2}=4
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x^{2}}{2^{2}}+\left(\frac{xx-4}{x}\right)^{2}=4
Since \frac{xx}{x} and \frac{4}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}}{2^{2}}+\left(\frac{x^{2}-4}{x}\right)^{2}=4
Do the multiplications in xx-4.
\frac{x^{2}}{2^{2}}+\frac{\left(x^{2}-4\right)^{2}}{x^{2}}=4
To raise \frac{x^{2}-4}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}x^{2}}{2^{2}x^{2}}+\frac{\left(x^{2}-4\right)^{2}\times 2^{2}}{2^{2}x^{2}}=4
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2} and x^{2} is 2^{2}x^{2}. Multiply \frac{x^{2}}{2^{2}} times \frac{x^{2}}{x^{2}}. Multiply \frac{\left(x^{2}-4\right)^{2}}{x^{2}} times \frac{2^{2}}{2^{2}}.
\frac{x^{2}x^{2}+\left(x^{2}-4\right)^{2}\times 2^{2}}{2^{2}x^{2}}=4
Since \frac{x^{2}x^{2}}{2^{2}x^{2}} and \frac{\left(x^{2}-4\right)^{2}\times 2^{2}}{2^{2}x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}+4x^{4}-32x^{2}+64}{2^{2}x^{2}}=4
Do the multiplications in x^{2}x^{2}+\left(x^{2}-4\right)^{2}\times 2^{2}.
\frac{5x^{4}-32x^{2}+64}{2^{2}x^{2}}=4
Combine like terms in x^{4}+4x^{4}-32x^{2}+64.
\frac{5x^{4}-32x^{2}+64}{4x^{2}}=4
Calculate 2 to the power of 2 and get 4.
\frac{5x^{4}-32x^{2}+64}{4x^{2}}-4=0
Subtract 4 from both sides.
\frac{5x^{4}-32x^{2}+64}{4x^{2}}-\frac{4\times 4x^{2}}{4x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{4x^{2}}{4x^{2}}.
\frac{5x^{4}-32x^{2}+64-4\times 4x^{2}}{4x^{2}}=0
Since \frac{5x^{4}-32x^{2}+64}{4x^{2}} and \frac{4\times 4x^{2}}{4x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{5x^{4}-32x^{2}+64-16x^{2}}{4x^{2}}=0
Do the multiplications in 5x^{4}-32x^{2}+64-4\times 4x^{2}.
\frac{5x^{4}-48x^{2}+64}{4x^{2}}=0
Combine like terms in 5x^{4}-32x^{2}+64-16x^{2}.
5x^{4}-48x^{2}+64=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x^{2}.
5t^{2}-48t+64=0
Substitute t for x^{2}.
t=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 5\times 64}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 5 for a, -48 for b, and 64 for c in the quadratic formula.
t=\frac{48±32}{10}
Do the calculations.
t=8 t=\frac{8}{5}
Solve the equation t=\frac{48±32}{10} when ± is plus and when ± is minus.
x=2\sqrt{2} x=-2\sqrt{2} x=\frac{2\sqrt{10}}{5} x=-\frac{2\sqrt{10}}{5}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}