Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
10\left(\frac{x}{2}+2\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-3\left(x-1\right)-4
Multiply both sides of the equation by 10, the least common multiple of 2,5,10.
\left(10\times \frac{x}{2}+20\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-3\left(x-1\right)-4
Use the distributive property to multiply 10 by \frac{x}{2}+2.
\left(5x+20\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-3\left(x-1\right)-4
Cancel out 2, the greatest common factor in 10 and 2.
5x^{2}+15x-20+16=5x^{2}+2\left(4x+1\right)-3\left(x-1\right)-4
Use the distributive property to multiply 5x+20 by x-1 and combine like terms.
5x^{2}+15x-4=5x^{2}+2\left(4x+1\right)-3\left(x-1\right)-4
Add -20 and 16 to get -4.
5x^{2}+15x-4=5x^{2}+8x+2-3\left(x-1\right)-4
Use the distributive property to multiply 2 by 4x+1.
5x^{2}+15x-4=5x^{2}+8x+2-3x+3-4
Use the distributive property to multiply -3 by x-1.
5x^{2}+15x-4=5x^{2}+5x+2+3-4
Combine 8x and -3x to get 5x.
5x^{2}+15x-4=5x^{2}+5x+5-4
Add 2 and 3 to get 5.
5x^{2}+15x-4=5x^{2}+5x+1
Subtract 4 from 5 to get 1.
5x^{2}+15x-4-5x^{2}=5x+1
Subtract 5x^{2} from both sides.
15x-4=5x+1
Combine 5x^{2} and -5x^{2} to get 0.
15x-4-5x=1
Subtract 5x from both sides.
10x-4=1
Combine 15x and -5x to get 10x.
10x=1+4
Add 4 to both sides.
10x=5
Add 1 and 4 to get 5.
x=\frac{5}{10}
Divide both sides by 10.
x=\frac{1}{2}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}