Evaluate
\frac{2y^{\frac{4}{3}}}{x^{2}}
Differentiate w.r.t. x
-\frac{4y^{\frac{4}{3}}}{x^{3}}
Share
Copied to clipboard
\left(\frac{x^{8}}{16y^{\frac{16}{3}}}\right)^{-\frac{1}{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(x^{8}\right)^{-\frac{1}{4}}}{\left(16y^{\frac{16}{3}}\right)^{-\frac{1}{4}}}
To raise \frac{x^{8}}{16y^{\frac{16}{3}}} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{-2}}{\left(16y^{\frac{16}{3}}\right)^{-\frac{1}{4}}}
To raise a power to another power, multiply the exponents. Multiply 8 and -\frac{1}{4} to get -2.
\frac{x^{-2}}{16^{-\frac{1}{4}}\left(y^{\frac{16}{3}}\right)^{-\frac{1}{4}}}
Expand \left(16y^{\frac{16}{3}}\right)^{-\frac{1}{4}}.
\frac{x^{-2}}{16^{-\frac{1}{4}}y^{-\frac{4}{3}}}
To raise a power to another power, multiply the exponents. Multiply \frac{16}{3} and -\frac{1}{4} to get -\frac{4}{3}.
\frac{x^{-2}}{\frac{1}{2}y^{-\frac{4}{3}}}
Calculate 16 to the power of -\frac{1}{4} and get \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}