Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(x^{6}\right)^{\frac{1}{2}}}{\left(9y^{-4}\right)^{\frac{1}{2}}}\times \frac{\left(x^{6}y^{3}\right)^{-\frac{1}{3}}}{\left(x^{4}y^{2}\right)^{-\frac{1}{2}}}
To raise \frac{x^{6}}{9y^{-4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{6}\right)^{\frac{1}{2}}}{\left(9y^{-4}\right)^{\frac{1}{2}}}\times \frac{\left(x^{6}\right)^{-\frac{1}{3}}\left(y^{3}\right)^{-\frac{1}{3}}}{\left(x^{4}y^{2}\right)^{-\frac{1}{2}}}
Expand \left(x^{6}y^{3}\right)^{-\frac{1}{3}}.
\frac{\left(x^{6}\right)^{\frac{1}{2}}}{\left(9y^{-4}\right)^{\frac{1}{2}}}\times \frac{x^{-2}\left(y^{3}\right)^{-\frac{1}{3}}}{\left(x^{4}y^{2}\right)^{-\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply 6 and -\frac{1}{3} to get -2.
\frac{\left(x^{6}\right)^{\frac{1}{2}}}{\left(9y^{-4}\right)^{\frac{1}{2}}}\times \frac{x^{-2}y^{-1}}{\left(x^{4}y^{2}\right)^{-\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply 3 and -\frac{1}{3} to get -1.
\frac{\left(x^{6}\right)^{\frac{1}{2}}}{\left(9y^{-4}\right)^{\frac{1}{2}}}\times \frac{x^{-2}y^{-1}}{\left(x^{4}\right)^{-\frac{1}{2}}\left(y^{2}\right)^{-\frac{1}{2}}}
Expand \left(x^{4}y^{2}\right)^{-\frac{1}{2}}.
\frac{\left(x^{6}\right)^{\frac{1}{2}}}{\left(9y^{-4}\right)^{\frac{1}{2}}}\times \frac{x^{-2}y^{-1}}{x^{-2}\left(y^{2}\right)^{-\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply 4 and -\frac{1}{2} to get -2.
\frac{\left(x^{6}\right)^{\frac{1}{2}}}{\left(9y^{-4}\right)^{\frac{1}{2}}}\times \frac{x^{-2}y^{-1}}{x^{-2}y^{-1}}
To raise a power to another power, multiply the exponents. Multiply 2 and -\frac{1}{2} to get -1.
\frac{\left(x^{6}\right)^{\frac{1}{2}}}{\left(9y^{-4}\right)^{\frac{1}{2}}}\times 1
Cancel out x^{-2}\times \frac{1}{y} in both numerator and denominator.
\frac{x^{3}}{\left(9y^{-4}\right)^{\frac{1}{2}}}\times 1
To raise a power to another power, multiply the exponents. Multiply 6 and \frac{1}{2} to get 3.
\frac{x^{3}}{9^{\frac{1}{2}}\left(y^{-4}\right)^{\frac{1}{2}}}\times 1
Expand \left(9y^{-4}\right)^{\frac{1}{2}}.
\frac{x^{3}}{9^{\frac{1}{2}}y^{-2}}\times 1
To raise a power to another power, multiply the exponents. Multiply -4 and \frac{1}{2} to get -2.
\frac{x^{3}}{3y^{-2}}\times 1
Calculate 9 to the power of \frac{1}{2} and get 3.
\frac{x^{3}}{3y^{-2}}
Express \frac{x^{3}}{3y^{-2}}\times 1 as a single fraction.