Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(x^{4}\right)^{2}}{\left(2y^{-2}\right)^{2}}\times \left(2xy^{2}\right)^{3}
To raise \frac{x^{4}}{2y^{-2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{4}\right)^{2}}{\left(2y^{-2}\right)^{2}}\times 2^{3}x^{3}\left(y^{2}\right)^{3}
Expand \left(2xy^{2}\right)^{3}.
\frac{\left(x^{4}\right)^{2}}{\left(2y^{-2}\right)^{2}}\times 2^{3}x^{3}y^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(x^{4}\right)^{2}}{\left(2y^{-2}\right)^{2}}\times 8x^{3}y^{6}
Calculate 2 to the power of 3 and get 8.
\frac{\left(x^{4}\right)^{2}\times 8}{\left(2y^{-2}\right)^{2}}x^{3}y^{6}
Express \frac{\left(x^{4}\right)^{2}}{\left(2y^{-2}\right)^{2}}\times 8 as a single fraction.
\frac{\left(x^{4}\right)^{2}\times 8x^{3}}{\left(2y^{-2}\right)^{2}}y^{6}
Express \frac{\left(x^{4}\right)^{2}\times 8}{\left(2y^{-2}\right)^{2}}x^{3} as a single fraction.
\frac{\left(x^{4}\right)^{2}\times 8x^{3}y^{6}}{\left(2y^{-2}\right)^{2}}
Express \frac{\left(x^{4}\right)^{2}\times 8x^{3}}{\left(2y^{-2}\right)^{2}}y^{6} as a single fraction.
\frac{x^{8}\times 8x^{3}y^{6}}{\left(2y^{-2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{x^{11}\times 8y^{6}}{\left(2y^{-2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 8 and 3 to get 11.
\frac{x^{11}\times 8y^{6}}{2^{2}\left(y^{-2}\right)^{2}}
Expand \left(2y^{-2}\right)^{2}.
\frac{x^{11}\times 8y^{6}}{2^{2}y^{-4}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{x^{11}\times 8y^{6}}{4y^{-4}}
Calculate 2 to the power of 2 and get 4.
\frac{2y^{6}x^{11}}{y^{-4}}
Cancel out 4 in both numerator and denominator.
2y^{10}x^{11}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(x^{4}\right)^{2}}{\left(2y^{-2}\right)^{2}}\times \left(2xy^{2}\right)^{3}
To raise \frac{x^{4}}{2y^{-2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{4}\right)^{2}}{\left(2y^{-2}\right)^{2}}\times 2^{3}x^{3}\left(y^{2}\right)^{3}
Expand \left(2xy^{2}\right)^{3}.
\frac{\left(x^{4}\right)^{2}}{\left(2y^{-2}\right)^{2}}\times 2^{3}x^{3}y^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(x^{4}\right)^{2}}{\left(2y^{-2}\right)^{2}}\times 8x^{3}y^{6}
Calculate 2 to the power of 3 and get 8.
\frac{\left(x^{4}\right)^{2}\times 8}{\left(2y^{-2}\right)^{2}}x^{3}y^{6}
Express \frac{\left(x^{4}\right)^{2}}{\left(2y^{-2}\right)^{2}}\times 8 as a single fraction.
\frac{\left(x^{4}\right)^{2}\times 8x^{3}}{\left(2y^{-2}\right)^{2}}y^{6}
Express \frac{\left(x^{4}\right)^{2}\times 8}{\left(2y^{-2}\right)^{2}}x^{3} as a single fraction.
\frac{\left(x^{4}\right)^{2}\times 8x^{3}y^{6}}{\left(2y^{-2}\right)^{2}}
Express \frac{\left(x^{4}\right)^{2}\times 8x^{3}}{\left(2y^{-2}\right)^{2}}y^{6} as a single fraction.
\frac{x^{8}\times 8x^{3}y^{6}}{\left(2y^{-2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{x^{11}\times 8y^{6}}{\left(2y^{-2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 8 and 3 to get 11.
\frac{x^{11}\times 8y^{6}}{2^{2}\left(y^{-2}\right)^{2}}
Expand \left(2y^{-2}\right)^{2}.
\frac{x^{11}\times 8y^{6}}{2^{2}y^{-4}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{x^{11}\times 8y^{6}}{4y^{-4}}
Calculate 2 to the power of 2 and get 4.
\frac{2y^{6}x^{11}}{y^{-4}}
Cancel out 4 in both numerator and denominator.
2y^{10}x^{11}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.