Evaluate
\frac{3x^{4}}{8y^{2}}
Differentiate w.r.t. x
\frac{3x^{3}}{2y^{2}}
Share
Copied to clipboard
\frac{x^{3}y\times \frac{6}{y^{3}}}{4\times \frac{4}{x}}
Divide \frac{x^{3}y}{4} by \frac{\frac{4}{x}}{\frac{6}{y^{3}}} by multiplying \frac{x^{3}y}{4} by the reciprocal of \frac{\frac{4}{x}}{\frac{6}{y^{3}}}.
\frac{\frac{x^{3}\times 6}{y^{3}}y}{4\times \frac{4}{x}}
Express x^{3}\times \frac{6}{y^{3}} as a single fraction.
\frac{\frac{x^{3}\times 6}{y^{3}}y}{\frac{4\times 4}{x}}
Express 4\times \frac{4}{x} as a single fraction.
\frac{\frac{x^{3}\times 6y}{y^{3}}}{\frac{4\times 4}{x}}
Express \frac{x^{3}\times 6}{y^{3}}y as a single fraction.
\frac{\frac{6x^{3}}{y^{2}}}{\frac{4\times 4}{x}}
Cancel out y in both numerator and denominator.
\frac{\frac{6x^{3}}{y^{2}}}{\frac{16}{x}}
Multiply 4 and 4 to get 16.
\frac{6x^{3}x}{y^{2}\times 16}
Divide \frac{6x^{3}}{y^{2}} by \frac{16}{x} by multiplying \frac{6x^{3}}{y^{2}} by the reciprocal of \frac{16}{x}.
\frac{3xx^{3}}{8y^{2}}
Cancel out 2 in both numerator and denominator.
\frac{3x^{4}}{8y^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}