Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x^{2}-2x+4}{x-1}+\frac{\left(-x+2\right)\left(x-1\right)}{x-1}}{\frac{x^{2}+4x+4}{1-x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+2 times \frac{x-1}{x-1}.
\frac{\frac{x^{2}-2x+4+\left(-x+2\right)\left(x-1\right)}{x-1}}{\frac{x^{2}+4x+4}{1-x}}
Since \frac{x^{2}-2x+4}{x-1} and \frac{\left(-x+2\right)\left(x-1\right)}{x-1} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-2x+4-x^{2}+x+2x-2}{x-1}}{\frac{x^{2}+4x+4}{1-x}}
Do the multiplications in x^{2}-2x+4+\left(-x+2\right)\left(x-1\right).
\frac{\frac{x+2}{x-1}}{\frac{x^{2}+4x+4}{1-x}}
Combine like terms in x^{2}-2x+4-x^{2}+x+2x-2.
\frac{\left(x+2\right)\left(1-x\right)}{\left(x-1\right)\left(x^{2}+4x+4\right)}
Divide \frac{x+2}{x-1} by \frac{x^{2}+4x+4}{1-x} by multiplying \frac{x+2}{x-1} by the reciprocal of \frac{x^{2}+4x+4}{1-x}.
\frac{-\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x^{2}+4x+4\right)}
Extract the negative sign in 1-x.
\frac{-\left(x+2\right)}{x^{2}+4x+4}
Cancel out x-1 in both numerator and denominator.
\frac{-\left(x+2\right)}{\left(x+2\right)^{2}}
Factor the expressions that are not already factored.
\frac{-1}{x+2}
Cancel out x+2 in both numerator and denominator.
\frac{\frac{x^{2}-2x+4}{x-1}+\frac{\left(-x+2\right)\left(x-1\right)}{x-1}}{\frac{x^{2}+4x+4}{1-x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+2 times \frac{x-1}{x-1}.
\frac{\frac{x^{2}-2x+4+\left(-x+2\right)\left(x-1\right)}{x-1}}{\frac{x^{2}+4x+4}{1-x}}
Since \frac{x^{2}-2x+4}{x-1} and \frac{\left(-x+2\right)\left(x-1\right)}{x-1} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-2x+4-x^{2}+x+2x-2}{x-1}}{\frac{x^{2}+4x+4}{1-x}}
Do the multiplications in x^{2}-2x+4+\left(-x+2\right)\left(x-1\right).
\frac{\frac{x+2}{x-1}}{\frac{x^{2}+4x+4}{1-x}}
Combine like terms in x^{2}-2x+4-x^{2}+x+2x-2.
\frac{\left(x+2\right)\left(1-x\right)}{\left(x-1\right)\left(x^{2}+4x+4\right)}
Divide \frac{x+2}{x-1} by \frac{x^{2}+4x+4}{1-x} by multiplying \frac{x+2}{x-1} by the reciprocal of \frac{x^{2}+4x+4}{1-x}.
\frac{-\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x^{2}+4x+4\right)}
Extract the negative sign in 1-x.
\frac{-\left(x+2\right)}{x^{2}+4x+4}
Cancel out x-1 in both numerator and denominator.
\frac{-\left(x+2\right)}{\left(x+2\right)^{2}}
Factor the expressions that are not already factored.
\frac{-1}{x+2}
Cancel out x+2 in both numerator and denominator.