Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+6x+9\right)}{\left(x^{2}+5x+6\right)\left(2x+2\right)}}{\frac{9x-9}{4}}
Multiply \frac{x^{2}-1}{x^{2}+5x+6} times \frac{x^{2}+6x+9}{2x+2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-1\right)\left(x^{2}+6x+9\right)\times 4}{\left(x^{2}+5x+6\right)\left(2x+2\right)\left(9x-9\right)}
Divide \frac{\left(x^{2}-1\right)\left(x^{2}+6x+9\right)}{\left(x^{2}+5x+6\right)\left(2x+2\right)} by \frac{9x-9}{4} by multiplying \frac{\left(x^{2}-1\right)\left(x^{2}+6x+9\right)}{\left(x^{2}+5x+6\right)\left(2x+2\right)} by the reciprocal of \frac{9x-9}{4}.
\frac{4\left(x-1\right)\left(x+1\right)\left(x+3\right)^{2}}{2\times 9\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Factor the expressions that are not already factored.
\frac{2\left(x+3\right)}{9\left(x+2\right)}
Cancel out 2\left(x-1\right)\left(x+1\right)\left(x+3\right) in both numerator and denominator.
\frac{2x+6}{9x+18}
Expand the expression.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+6x+9\right)}{\left(x^{2}+5x+6\right)\left(2x+2\right)}}{\frac{9x-9}{4}}
Multiply \frac{x^{2}-1}{x^{2}+5x+6} times \frac{x^{2}+6x+9}{2x+2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-1\right)\left(x^{2}+6x+9\right)\times 4}{\left(x^{2}+5x+6\right)\left(2x+2\right)\left(9x-9\right)}
Divide \frac{\left(x^{2}-1\right)\left(x^{2}+6x+9\right)}{\left(x^{2}+5x+6\right)\left(2x+2\right)} by \frac{9x-9}{4} by multiplying \frac{\left(x^{2}-1\right)\left(x^{2}+6x+9\right)}{\left(x^{2}+5x+6\right)\left(2x+2\right)} by the reciprocal of \frac{9x-9}{4}.
\frac{4\left(x-1\right)\left(x+1\right)\left(x+3\right)^{2}}{2\times 9\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Factor the expressions that are not already factored.
\frac{2\left(x+3\right)}{9\left(x+2\right)}
Cancel out 2\left(x-1\right)\left(x+1\right)\left(x+3\right) in both numerator and denominator.
\frac{2x+6}{9x+18}
Expand the expression.