Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x^{2}}{\left(x-3\right)\left(x+3\right)}-\frac{x+1}{x+3}}{\frac{1}{x-3}}
Factor x^{2}-9.
\frac{\frac{x^{2}}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x-3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x+3 is \left(x-3\right)\left(x+3\right). Multiply \frac{x+1}{x+3} times \frac{x-3}{x-3}.
\frac{\frac{x^{2}-\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x-3}}
Since \frac{x^{2}}{\left(x-3\right)\left(x+3\right)} and \frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-x^{2}+3x-x+3}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x-3}}
Do the multiplications in x^{2}-\left(x+1\right)\left(x-3\right).
\frac{\frac{2x+3}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x-3}}
Combine like terms in x^{2}-x^{2}+3x-x+3.
\frac{\left(2x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
Divide \frac{2x+3}{\left(x-3\right)\left(x+3\right)} by \frac{1}{x-3} by multiplying \frac{2x+3}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{1}{x-3}.
\frac{2x+3}{x+3}
Cancel out x-3 in both numerator and denominator.
\frac{\frac{x^{2}}{\left(x-3\right)\left(x+3\right)}-\frac{x+1}{x+3}}{\frac{1}{x-3}}
Factor x^{2}-9.
\frac{\frac{x^{2}}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x-3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x+3 is \left(x-3\right)\left(x+3\right). Multiply \frac{x+1}{x+3} times \frac{x-3}{x-3}.
\frac{\frac{x^{2}-\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x-3}}
Since \frac{x^{2}}{\left(x-3\right)\left(x+3\right)} and \frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-x^{2}+3x-x+3}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x-3}}
Do the multiplications in x^{2}-\left(x+1\right)\left(x-3\right).
\frac{\frac{2x+3}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x-3}}
Combine like terms in x^{2}-x^{2}+3x-x+3.
\frac{\left(2x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
Divide \frac{2x+3}{\left(x-3\right)\left(x+3\right)} by \frac{1}{x-3} by multiplying \frac{2x+3}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{1}{x-3}.
\frac{2x+3}{x+3}
Cancel out x-3 in both numerator and denominator.