Evaluate
x^{2}+x-1+\frac{2}{x}-\frac{1}{x^{2}}
Expand
x^{2}+x-1+\frac{2}{x}-\frac{1}{x^{2}}
Graph
Share
Copied to clipboard
x^{2}+x-\frac{x+1}{\frac{x^{3}+x^{2}}{x^{2}-2x+1}}
Anything divided by one gives itself.
x^{2}+x-\frac{\left(x+1\right)\left(x^{2}-2x+1\right)}{x^{3}+x^{2}}
Divide x+1 by \frac{x^{3}+x^{2}}{x^{2}-2x+1} by multiplying x+1 by the reciprocal of \frac{x^{3}+x^{2}}{x^{2}-2x+1}.
x^{2}+x-\frac{\left(x+1\right)\left(x-1\right)^{2}}{\left(x+1\right)x^{2}}
Factor the expressions that are not already factored in \frac{\left(x+1\right)\left(x^{2}-2x+1\right)}{x^{3}+x^{2}}.
x^{2}+x-\frac{\left(x-1\right)^{2}}{x^{2}}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x^{2}+x\right)x^{2}}{x^{2}}-\frac{\left(x-1\right)^{2}}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+x times \frac{x^{2}}{x^{2}}.
\frac{\left(x^{2}+x\right)x^{2}-\left(x-1\right)^{2}}{x^{2}}
Since \frac{\left(x^{2}+x\right)x^{2}}{x^{2}} and \frac{\left(x-1\right)^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}+x^{3}-x^{2}+2x-1}{x^{2}}
Do the multiplications in \left(x^{2}+x\right)x^{2}-\left(x-1\right)^{2}.
x^{2}+x-\frac{x+1}{\frac{x^{3}+x^{2}}{x^{2}-2x+1}}
Anything divided by one gives itself.
x^{2}+x-\frac{\left(x+1\right)\left(x^{2}-2x+1\right)}{x^{3}+x^{2}}
Divide x+1 by \frac{x^{3}+x^{2}}{x^{2}-2x+1} by multiplying x+1 by the reciprocal of \frac{x^{3}+x^{2}}{x^{2}-2x+1}.
x^{2}+x-\frac{\left(x+1\right)\left(x-1\right)^{2}}{\left(x+1\right)x^{2}}
Factor the expressions that are not already factored in \frac{\left(x+1\right)\left(x^{2}-2x+1\right)}{x^{3}+x^{2}}.
x^{2}+x-\frac{\left(x-1\right)^{2}}{x^{2}}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x^{2}+x\right)x^{2}}{x^{2}}-\frac{\left(x-1\right)^{2}}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+x times \frac{x^{2}}{x^{2}}.
\frac{\left(x^{2}+x\right)x^{2}-\left(x-1\right)^{2}}{x^{2}}
Since \frac{\left(x^{2}+x\right)x^{2}}{x^{2}} and \frac{\left(x-1\right)^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}+x^{3}-x^{2}+2x-1}{x^{2}}
Do the multiplications in \left(x^{2}+x\right)x^{2}-\left(x-1\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}