Evaluate
\frac{x^{3}}{y^{\frac{7}{5}}z^{6}}
Differentiate w.r.t. x
\frac{3x^{2}}{y^{\frac{7}{5}}z^{6}}
Share
Copied to clipboard
\left(x^{-5}y^{\frac{7}{3}}z^{10}\right)^{\frac{-3}{5}}
Cancel out y^{\frac{2}{3}} in both numerator and denominator.
\left(x^{-5}y^{\frac{7}{3}}z^{10}\right)^{-\frac{3}{5}}
Fraction \frac{-3}{5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
\left(x^{-5}\right)^{-\frac{3}{5}}\left(y^{\frac{7}{3}}\right)^{-\frac{3}{5}}\left(z^{10}\right)^{-\frac{3}{5}}
Expand \left(x^{-5}y^{\frac{7}{3}}z^{10}\right)^{-\frac{3}{5}}.
x^{3}\left(y^{\frac{7}{3}}\right)^{-\frac{3}{5}}\left(z^{10}\right)^{-\frac{3}{5}}
To raise a power to another power, multiply the exponents. Multiply -5 and -\frac{3}{5} to get 3.
x^{3}y^{-\frac{7}{5}}\left(z^{10}\right)^{-\frac{3}{5}}
To raise a power to another power, multiply the exponents. Multiply \frac{7}{3} and -\frac{3}{5} to get -\frac{7}{5}.
x^{3}y^{-\frac{7}{5}}z^{-6}
To raise a power to another power, multiply the exponents. Multiply 10 and -\frac{3}{5} to get -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}