Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x^{\frac{1}{15}}x^{-3}}{x^{\frac{2}{7}}x^{\frac{5}{2}}}\right)^{-\frac{2}{5}}
To multiply powers of the same base, add their exponents. Add -\frac{3}{5} and \frac{2}{3} to get \frac{1}{15}.
\left(\frac{x^{-\frac{44}{15}}}{x^{\frac{2}{7}}x^{\frac{5}{2}}}\right)^{-\frac{2}{5}}
To multiply powers of the same base, add their exponents. Add \frac{1}{15} and -3 to get -\frac{44}{15}.
\left(\frac{x^{-\frac{44}{15}}}{x^{\frac{39}{14}}}\right)^{-\frac{2}{5}}
To multiply powers of the same base, add their exponents. Add \frac{2}{7} and \frac{5}{2} to get \frac{39}{14}.
\left(\frac{1}{x^{\frac{1201}{210}}}\right)^{-\frac{2}{5}}
Rewrite x^{\frac{39}{14}} as x^{-\frac{44}{15}}x^{\frac{1201}{210}}. Cancel out x^{-\frac{44}{15}} in both numerator and denominator.
\frac{1^{-\frac{2}{5}}}{\left(x^{\frac{1201}{210}}\right)^{-\frac{2}{5}}}
To raise \frac{1}{x^{\frac{1201}{210}}} to a power, raise both numerator and denominator to the power and then divide.
\frac{1^{-\frac{2}{5}}}{x^{-\frac{1201}{525}}}
To raise a power to another power, multiply the exponents. Multiply \frac{1201}{210} and -\frac{2}{5} to get -\frac{1201}{525}.
\frac{1}{x^{-\frac{1201}{525}}}
Calculate 1 to the power of -\frac{2}{5} and get 1.
x^{-\frac{1201}{525}\left(-1\right)}
To raise a power to another power, multiply the exponents.
x^{\frac{1201}{525}}
Multiply -\frac{1201}{525} times -1.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{x^{\frac{1}{15}}x^{-3}}{x^{\frac{2}{7}}x^{\frac{5}{2}}}\right)^{-\frac{2}{5}})
To multiply powers of the same base, add their exponents. Add -\frac{3}{5} and \frac{2}{3} to get \frac{1}{15}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{x^{-\frac{44}{15}}}{x^{\frac{2}{7}}x^{\frac{5}{2}}}\right)^{-\frac{2}{5}})
To multiply powers of the same base, add their exponents. Add \frac{1}{15} and -3 to get -\frac{44}{15}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{x^{-\frac{44}{15}}}{x^{\frac{39}{14}}}\right)^{-\frac{2}{5}})
To multiply powers of the same base, add their exponents. Add \frac{2}{7} and \frac{5}{2} to get \frac{39}{14}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{1}{x^{\frac{1201}{210}}}\right)^{-\frac{2}{5}})
Rewrite x^{\frac{39}{14}} as x^{-\frac{44}{15}}x^{\frac{1201}{210}}. Cancel out x^{-\frac{44}{15}} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{-\frac{2}{5}}}{\left(x^{\frac{1201}{210}}\right)^{-\frac{2}{5}}})
To raise \frac{1}{x^{\frac{1201}{210}}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{-\frac{2}{5}}}{x^{-\frac{1201}{525}}})
To raise a power to another power, multiply the exponents. Multiply \frac{1201}{210} and -\frac{2}{5} to get -\frac{1201}{525}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{-\frac{1201}{525}}})
Calculate 1 to the power of -\frac{2}{5} and get 1.
-\left(x^{-\frac{1201}{525}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{-\frac{1201}{525}})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{-\frac{1201}{525}}\right)^{-2}\left(-\frac{1201}{525}\right)x^{-\frac{1201}{525}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{1201}{525}x^{-\frac{1726}{525}}\left(x^{-\frac{1201}{525}}\right)^{-2}
Simplify.