Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{x^{-2}y^{2}}{x^{2}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2}
Cancel out y in both numerator and denominator.
\left(\frac{y^{2}}{x^{4}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2}
To raise \frac{y^{2}}{x^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}x^{3}\right)^{2}
Cancel out \sqrt{y} in both numerator and denominator.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}\left(x^{3}\right)^{2}
Expand \left(\sqrt{y}x^{3}\right)^{2}.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}x^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6}
Calculate \sqrt{y} to the power of 2 and get y.
\frac{y^{-1}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and -\frac{1}{2} to get -1.
\frac{y^{-1}}{x^{-2}}yx^{6}
To raise a power to another power, multiply the exponents. Multiply 4 and -\frac{1}{2} to get -2.
\frac{y^{-1}y}{x^{-2}}x^{6}
Express \frac{y^{-1}}{x^{-2}}y as a single fraction.
\frac{y^{-1}yx^{6}}{x^{-2}}
Express \frac{y^{-1}y}{x^{-2}}x^{6} as a single fraction.
\frac{1}{y}yx^{8}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
x^{8}
Cancel out y and y.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{x^{-2}y^{2}}{x^{2}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2})
Cancel out y in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{y^{2}}{x^{4}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2})
To raise \frac{y^{2}}{x^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}x^{3}\right)^{2})
Cancel out \sqrt{y} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}\left(x^{3}\right)^{2})
Expand \left(\sqrt{y}x^{3}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}x^{6})
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6})
Calculate \sqrt{y} to the power of 2 and get y.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6})
To raise a power to another power, multiply the exponents. Multiply 2 and -\frac{1}{2} to get -1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}}{x^{-2}}yx^{6})
To raise a power to another power, multiply the exponents. Multiply 4 and -\frac{1}{2} to get -2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}y}{x^{-2}}x^{6})
Express \frac{y^{-1}}{x^{-2}}y as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}yx^{6}}{x^{-2}})
Express \frac{y^{-1}y}{x^{-2}}x^{6} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{y}yx^{8})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{8})
Cancel out y and y.
8x^{8-1}
The derivative of ax^{n} is nax^{n-1}.
8x^{7}
Subtract 1 from 8.