Evaluate
\frac{x^{5}}{z^{4}y^{14}}
Expand
\frac{x^{5}}{z^{4}y^{14}}
Share
Copied to clipboard
\frac{x^{-2}y^{-5}\left(xy^{-3}\right)^{3}}{z^{-4}\left(xz^{-2}\right)^{-4}}
Divide \frac{x^{-2}y^{-5}}{z^{-4}} by \frac{\left(xz^{-2}\right)^{-4}}{\left(xy^{-3}\right)^{3}} by multiplying \frac{x^{-2}y^{-5}}{z^{-4}} by the reciprocal of \frac{\left(xz^{-2}\right)^{-4}}{\left(xy^{-3}\right)^{3}}.
\frac{x^{-2}y^{-5}x^{3}\left(y^{-3}\right)^{3}}{z^{-4}\left(xz^{-2}\right)^{-4}}
Expand \left(xy^{-3}\right)^{3}.
\frac{x^{-2}y^{-5}x^{3}y^{-9}}{z^{-4}\left(xz^{-2}\right)^{-4}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{x^{1}y^{-5}y^{-9}}{z^{-4}\left(xz^{-2}\right)^{-4}}
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
\frac{x^{1}y^{-14}}{z^{-4}\left(xz^{-2}\right)^{-4}}
To multiply powers of the same base, add their exponents. Add -5 and -9 to get -14.
\frac{x^{1}y^{-14}}{z^{-4}x^{-4}\left(z^{-2}\right)^{-4}}
Expand \left(xz^{-2}\right)^{-4}.
\frac{x^{1}y^{-14}}{z^{-4}x^{-4}z^{8}}
To raise a power to another power, multiply the exponents. Multiply -2 and -4 to get 8.
\frac{x^{1}y^{-14}}{z^{4}x^{-4}}
To multiply powers of the same base, add their exponents. Add -4 and 8 to get 4.
\frac{y^{-14}x^{5}}{z^{4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{x^{-2}y^{-5}\left(xy^{-3}\right)^{3}}{z^{-4}\left(xz^{-2}\right)^{-4}}
Divide \frac{x^{-2}y^{-5}}{z^{-4}} by \frac{\left(xz^{-2}\right)^{-4}}{\left(xy^{-3}\right)^{3}} by multiplying \frac{x^{-2}y^{-5}}{z^{-4}} by the reciprocal of \frac{\left(xz^{-2}\right)^{-4}}{\left(xy^{-3}\right)^{3}}.
\frac{x^{-2}y^{-5}x^{3}\left(y^{-3}\right)^{3}}{z^{-4}\left(xz^{-2}\right)^{-4}}
Expand \left(xy^{-3}\right)^{3}.
\frac{x^{-2}y^{-5}x^{3}y^{-9}}{z^{-4}\left(xz^{-2}\right)^{-4}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{x^{1}y^{-5}y^{-9}}{z^{-4}\left(xz^{-2}\right)^{-4}}
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
\frac{x^{1}y^{-14}}{z^{-4}\left(xz^{-2}\right)^{-4}}
To multiply powers of the same base, add their exponents. Add -5 and -9 to get -14.
\frac{x^{1}y^{-14}}{z^{-4}x^{-4}\left(z^{-2}\right)^{-4}}
Expand \left(xz^{-2}\right)^{-4}.
\frac{x^{1}y^{-14}}{z^{-4}x^{-4}z^{8}}
To raise a power to another power, multiply the exponents. Multiply -2 and -4 to get 8.
\frac{x^{1}y^{-14}}{z^{4}x^{-4}}
To multiply powers of the same base, add their exponents. Add -4 and 8 to get 4.
\frac{y^{-14}x^{5}}{z^{4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}