Evaluate
-1
Factor
-1
Share
Copied to clipboard
\frac{\left(-y^{-2}x^{2}+1\right)x^{-2}}{\left(1+\frac{1}{y}x\right)\times \frac{1}{x}}\times \frac{x^{2}y+xy^{2}}{x^{2}-y^{2}}
Factor the expressions that are not already factored in \frac{x^{-2}-y^{-2}}{x^{-1}+y^{-1}}.
\frac{-y^{-2}x^{2}+1}{\left(1+\frac{1}{y}x\right)x^{1}}\times \frac{x^{2}y+xy^{2}}{x^{2}-y^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-y^{-2}x^{2}+1}{\left(1+\frac{x}{y}\right)x^{1}}\times \frac{x^{2}y+xy^{2}}{x^{2}-y^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{-y^{-2}x^{2}+1}{\left(\frac{y}{y}+\frac{x}{y}\right)x^{1}}\times \frac{x^{2}y+xy^{2}}{x^{2}-y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{-y^{-2}x^{2}+1}{\frac{y+x}{y}x^{1}}\times \frac{x^{2}y+xy^{2}}{x^{2}-y^{2}}
Since \frac{y}{y} and \frac{x}{y} have the same denominator, add them by adding their numerators.
\frac{-y^{-2}x^{2}+1}{\frac{y+x}{y}x}\times \frac{x^{2}y+xy^{2}}{x^{2}-y^{2}}
Calculate x to the power of 1 and get x.
\frac{-y^{-2}x^{2}+1}{\frac{\left(y+x\right)x}{y}}\times \frac{x^{2}y+xy^{2}}{x^{2}-y^{2}}
Express \frac{y+x}{y}x as a single fraction.
\frac{-y^{-2}x^{2}+1}{\frac{\left(y+x\right)x}{y}}\times \frac{xy\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Factor the expressions that are not already factored in \frac{x^{2}y+xy^{2}}{x^{2}-y^{2}}.
\frac{-y^{-2}x^{2}+1}{\frac{\left(y+x\right)x}{y}}\times \frac{xy}{x-y}
Cancel out x+y in both numerator and denominator.
\frac{\left(-y^{-2}x^{2}+1\right)y}{\left(y+x\right)x}\times \frac{xy}{x-y}
Divide -y^{-2}x^{2}+1 by \frac{\left(y+x\right)x}{y} by multiplying -y^{-2}x^{2}+1 by the reciprocal of \frac{\left(y+x\right)x}{y}.
\frac{\left(-y^{-2}x^{2}+1\right)yxy}{\left(y+x\right)x\left(x-y\right)}
Multiply \frac{\left(-y^{-2}x^{2}+1\right)y}{\left(y+x\right)x} times \frac{xy}{x-y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-y^{-2}x^{2}+1\right)yy}{\left(x+y\right)\left(x-y\right)}
Cancel out x in both numerator and denominator.
\frac{\left(-y^{-2}x^{2}+1\right)y^{2}}{\left(x+y\right)\left(x-y\right)}
Multiply y and y to get y^{2}.
\frac{-y^{-2}x^{2}y^{2}+y^{2}}{\left(x+y\right)\left(x-y\right)}
Use the distributive property to multiply -y^{-2}x^{2}+1 by y^{2}.
\frac{-x^{2}+y^{2}}{\left(x+y\right)\left(x-y\right)}
Multiply y^{-2} and y^{2} to get 1.
\frac{-x^{2}+y^{2}}{x^{2}-y^{2}}
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-\left(x^{2}-y^{2}\right)}{x^{2}-y^{2}}
Extract the negative sign in -x^{2}+y^{2}.
-1
Cancel out x^{2}-y^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}