Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+8}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x-2}}{\frac{x-4}{x^{2}-4x+4}}
Factor x^{2}-4.
\frac{\frac{x+8}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}}{\frac{x-4}{x^{2}-4x+4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2}{x-2} times \frac{x+2}{x+2}.
\frac{\frac{x+8-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}}{\frac{x-4}{x^{2}-4x+4}}
Since \frac{x+8}{\left(x-2\right)\left(x+2\right)} and \frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x+8-2x-4}{\left(x-2\right)\left(x+2\right)}}{\frac{x-4}{x^{2}-4x+4}}
Do the multiplications in x+8-2\left(x+2\right).
\frac{\frac{-x+4}{\left(x-2\right)\left(x+2\right)}}{\frac{x-4}{x^{2}-4x+4}}
Combine like terms in x+8-2x-4.
\frac{\left(-x+4\right)\left(x^{2}-4x+4\right)}{\left(x-2\right)\left(x+2\right)\left(x-4\right)}
Divide \frac{-x+4}{\left(x-2\right)\left(x+2\right)} by \frac{x-4}{x^{2}-4x+4} by multiplying \frac{-x+4}{\left(x-2\right)\left(x+2\right)} by the reciprocal of \frac{x-4}{x^{2}-4x+4}.
\frac{-\left(x-4\right)\left(x^{2}-4x+4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Extract the negative sign in -x+4.
\frac{-\left(x^{2}-4x+4\right)}{\left(x-2\right)\left(x+2\right)}
Cancel out x-4 in both numerator and denominator.
\frac{-\left(x-2\right)^{2}}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-2\right)}{x+2}
Cancel out x-2 in both numerator and denominator.
\frac{-x+2}{x+2}
Expand the expression.
\frac{\frac{x+8}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x-2}}{\frac{x-4}{x^{2}-4x+4}}
Factor x^{2}-4.
\frac{\frac{x+8}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}}{\frac{x-4}{x^{2}-4x+4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2}{x-2} times \frac{x+2}{x+2}.
\frac{\frac{x+8-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}}{\frac{x-4}{x^{2}-4x+4}}
Since \frac{x+8}{\left(x-2\right)\left(x+2\right)} and \frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x+8-2x-4}{\left(x-2\right)\left(x+2\right)}}{\frac{x-4}{x^{2}-4x+4}}
Do the multiplications in x+8-2\left(x+2\right).
\frac{\frac{-x+4}{\left(x-2\right)\left(x+2\right)}}{\frac{x-4}{x^{2}-4x+4}}
Combine like terms in x+8-2x-4.
\frac{\left(-x+4\right)\left(x^{2}-4x+4\right)}{\left(x-2\right)\left(x+2\right)\left(x-4\right)}
Divide \frac{-x+4}{\left(x-2\right)\left(x+2\right)} by \frac{x-4}{x^{2}-4x+4} by multiplying \frac{-x+4}{\left(x-2\right)\left(x+2\right)} by the reciprocal of \frac{x-4}{x^{2}-4x+4}.
\frac{-\left(x-4\right)\left(x^{2}-4x+4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Extract the negative sign in -x+4.
\frac{-\left(x^{2}-4x+4\right)}{\left(x-2\right)\left(x+2\right)}
Cancel out x-4 in both numerator and denominator.
\frac{-\left(x-2\right)^{2}}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-2\right)}{x+2}
Cancel out x-2 in both numerator and denominator.
\frac{-x+2}{x+2}
Expand the expression.