Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x+6\right)x}{x\left(x+2\right)}-\frac{4\left(x+2\right)}{x\left(x+2\right)}}{\frac{x^{2}-16}{x^{2}-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x is x\left(x+2\right). Multiply \frac{x+6}{x+2} times \frac{x}{x}. Multiply \frac{4}{x} times \frac{x+2}{x+2}.
\frac{\frac{\left(x+6\right)x-4\left(x+2\right)}{x\left(x+2\right)}}{\frac{x^{2}-16}{x^{2}-4}}
Since \frac{\left(x+6\right)x}{x\left(x+2\right)} and \frac{4\left(x+2\right)}{x\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+6x-4x-8}{x\left(x+2\right)}}{\frac{x^{2}-16}{x^{2}-4}}
Do the multiplications in \left(x+6\right)x-4\left(x+2\right).
\frac{\frac{x^{2}+2x-8}{x\left(x+2\right)}}{\frac{x^{2}-16}{x^{2}-4}}
Combine like terms in x^{2}+6x-4x-8.
\frac{\left(x^{2}+2x-8\right)\left(x^{2}-4\right)}{x\left(x+2\right)\left(x^{2}-16\right)}
Divide \frac{x^{2}+2x-8}{x\left(x+2\right)} by \frac{x^{2}-16}{x^{2}-4} by multiplying \frac{x^{2}+2x-8}{x\left(x+2\right)} by the reciprocal of \frac{x^{2}-16}{x^{2}-4}.
\frac{\left(x+2\right)\left(x+4\right)\left(x-2\right)^{2}}{x\left(x-4\right)\left(x+2\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{\left(x-2\right)^{2}}{x\left(x-4\right)}
Cancel out \left(x+2\right)\left(x+4\right) in both numerator and denominator.
\frac{x^{2}-4x+4}{x^{2}-4x}
Expand the expression.
\frac{\frac{\left(x+6\right)x}{x\left(x+2\right)}-\frac{4\left(x+2\right)}{x\left(x+2\right)}}{\frac{x^{2}-16}{x^{2}-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x is x\left(x+2\right). Multiply \frac{x+6}{x+2} times \frac{x}{x}. Multiply \frac{4}{x} times \frac{x+2}{x+2}.
\frac{\frac{\left(x+6\right)x-4\left(x+2\right)}{x\left(x+2\right)}}{\frac{x^{2}-16}{x^{2}-4}}
Since \frac{\left(x+6\right)x}{x\left(x+2\right)} and \frac{4\left(x+2\right)}{x\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+6x-4x-8}{x\left(x+2\right)}}{\frac{x^{2}-16}{x^{2}-4}}
Do the multiplications in \left(x+6\right)x-4\left(x+2\right).
\frac{\frac{x^{2}+2x-8}{x\left(x+2\right)}}{\frac{x^{2}-16}{x^{2}-4}}
Combine like terms in x^{2}+6x-4x-8.
\frac{\left(x^{2}+2x-8\right)\left(x^{2}-4\right)}{x\left(x+2\right)\left(x^{2}-16\right)}
Divide \frac{x^{2}+2x-8}{x\left(x+2\right)} by \frac{x^{2}-16}{x^{2}-4} by multiplying \frac{x^{2}+2x-8}{x\left(x+2\right)} by the reciprocal of \frac{x^{2}-16}{x^{2}-4}.
\frac{\left(x+2\right)\left(x+4\right)\left(x-2\right)^{2}}{x\left(x-4\right)\left(x+2\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{\left(x-2\right)^{2}}{x\left(x-4\right)}
Cancel out \left(x+2\right)\left(x+4\right) in both numerator and denominator.
\frac{x^{2}-4x+4}{x^{2}-4x}
Expand the expression.