Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{x+4y}{x\left(x-4y\right)}-\frac{x-4y}{x\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
Factor x^{2}-4xy. Factor x^{2}+4xy.
\frac{\frac{\left(x+4y\right)\left(x+4y\right)}{x\left(x-4y\right)\left(x+4y\right)}-\frac{\left(x-4y\right)\left(x-4y\right)}{x\left(x-4y\right)\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-4y\right) and x\left(x+4y\right) is x\left(x-4y\right)\left(x+4y\right). Multiply \frac{x+4y}{x\left(x-4y\right)} times \frac{x+4y}{x+4y}. Multiply \frac{x-4y}{x\left(x+4y\right)} times \frac{x-4y}{x-4y}.
\frac{\frac{\left(x+4y\right)\left(x+4y\right)-\left(x-4y\right)\left(x-4y\right)}{x\left(x-4y\right)\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
Since \frac{\left(x+4y\right)\left(x+4y\right)}{x\left(x-4y\right)\left(x+4y\right)} and \frac{\left(x-4y\right)\left(x-4y\right)}{x\left(x-4y\right)\left(x+4y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4xy+4xy+16y^{2}-x^{2}+4xy+4xy-16y^{2}}{x\left(x-4y\right)\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
Do the multiplications in \left(x+4y\right)\left(x+4y\right)-\left(x-4y\right)\left(x-4y\right).
\frac{\frac{16xy}{x\left(x-4y\right)\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
Combine like terms in x^{2}+4xy+4xy+16y^{2}-x^{2}+4xy+4xy-16y^{2}.
\frac{\frac{16y}{\left(x-4y\right)\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
Cancel out x in both numerator and denominator.
\frac{16y\left(x^{2}-16y^{2}\right)}{\left(x-4y\right)\left(x+4y\right)\times 4y^{2}}
Divide \frac{16y}{\left(x-4y\right)\left(x+4y\right)} by \frac{4y^{2}}{x^{2}-16y^{2}} by multiplying \frac{16y}{\left(x-4y\right)\left(x+4y\right)} by the reciprocal of \frac{4y^{2}}{x^{2}-16y^{2}}.
\frac{4\left(x^{2}-16y^{2}\right)}{y\left(x-4y\right)\left(x+4y\right)}
Cancel out 4y in both numerator and denominator.
\frac{4\left(x-4y\right)\left(x+4y\right)}{y\left(x-4y\right)\left(x+4y\right)}
Factor the expressions that are not already factored.
\frac{4}{y}
Cancel out \left(x-4y\right)\left(x+4y\right) in both numerator and denominator.
\frac{\frac{x+4y}{x\left(x-4y\right)}-\frac{x-4y}{x\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
Factor x^{2}-4xy. Factor x^{2}+4xy.
\frac{\frac{\left(x+4y\right)\left(x+4y\right)}{x\left(x-4y\right)\left(x+4y\right)}-\frac{\left(x-4y\right)\left(x-4y\right)}{x\left(x-4y\right)\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-4y\right) and x\left(x+4y\right) is x\left(x-4y\right)\left(x+4y\right). Multiply \frac{x+4y}{x\left(x-4y\right)} times \frac{x+4y}{x+4y}. Multiply \frac{x-4y}{x\left(x+4y\right)} times \frac{x-4y}{x-4y}.
\frac{\frac{\left(x+4y\right)\left(x+4y\right)-\left(x-4y\right)\left(x-4y\right)}{x\left(x-4y\right)\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
Since \frac{\left(x+4y\right)\left(x+4y\right)}{x\left(x-4y\right)\left(x+4y\right)} and \frac{\left(x-4y\right)\left(x-4y\right)}{x\left(x-4y\right)\left(x+4y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4xy+4xy+16y^{2}-x^{2}+4xy+4xy-16y^{2}}{x\left(x-4y\right)\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
Do the multiplications in \left(x+4y\right)\left(x+4y\right)-\left(x-4y\right)\left(x-4y\right).
\frac{\frac{16xy}{x\left(x-4y\right)\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
Combine like terms in x^{2}+4xy+4xy+16y^{2}-x^{2}+4xy+4xy-16y^{2}.
\frac{\frac{16y}{\left(x-4y\right)\left(x+4y\right)}}{\frac{4y^{2}}{x^{2}-16y^{2}}}
Cancel out x in both numerator and denominator.
\frac{16y\left(x^{2}-16y^{2}\right)}{\left(x-4y\right)\left(x+4y\right)\times 4y^{2}}
Divide \frac{16y}{\left(x-4y\right)\left(x+4y\right)} by \frac{4y^{2}}{x^{2}-16y^{2}} by multiplying \frac{16y}{\left(x-4y\right)\left(x+4y\right)} by the reciprocal of \frac{4y^{2}}{x^{2}-16y^{2}}.
\frac{4\left(x^{2}-16y^{2}\right)}{y\left(x-4y\right)\left(x+4y\right)}
Cancel out 4y in both numerator and denominator.
\frac{4\left(x-4y\right)\left(x+4y\right)}{y\left(x-4y\right)\left(x+4y\right)}
Factor the expressions that are not already factored.
\frac{4}{y}
Cancel out \left(x-4y\right)\left(x+4y\right) in both numerator and denominator.