Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(\left(\frac{x+2}{2}\right)^{3}-\left(x+1\right)^{2}\right)+8x^{2}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
Multiply both sides of the equation by 8, the least common multiple of 8,4.
8\left(\frac{\left(x+2\right)^{3}}{2^{3}}-\left(x+1\right)^{2}\right)+8x^{2}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
To raise \frac{x+2}{2} to a power, raise both numerator and denominator to the power and then divide.
8\left(\frac{\left(x+2\right)^{3}}{2^{3}}-\left(x^{2}+2x+1\right)\right)+8x^{2}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
8\left(\frac{\left(x+2\right)^{3}}{2^{3}}-x^{2}-2x-1\right)+8x^{2}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
To find the opposite of x^{2}+2x+1, find the opposite of each term.
8\left(\frac{\left(x+2\right)^{3}}{2^{3}}+\frac{\left(-x^{2}-2x-1\right)\times 2^{3}}{2^{3}}\right)+8x^{2}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{2}-2x-1 times \frac{2^{3}}{2^{3}}.
8\times \frac{\left(x+2\right)^{3}+\left(-x^{2}-2x-1\right)\times 2^{3}}{2^{3}}+8x^{2}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
Since \frac{\left(x+2\right)^{3}}{2^{3}} and \frac{\left(-x^{2}-2x-1\right)\times 2^{3}}{2^{3}} have the same denominator, add them by adding their numerators.
8\times \frac{x^{3}+3x^{2}\times 2+3x\times 2^{2}+2^{3}-8x^{2}-16x-8}{2^{3}}+8x^{2}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
Do the multiplications in \left(x+2\right)^{3}+\left(-x^{2}-2x-1\right)\times 2^{3}.
8\times \frac{x^{3}-2x^{2}-4x}{2^{3}}+8x^{2}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
Combine like terms in x^{3}+3x^{2}\times 2+3x\times 2^{2}+2^{3}-8x^{2}-16x-8.
\frac{8\left(x^{3}-2x^{2}-4x\right)}{2^{3}}+8x^{2}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
Express 8\times \frac{x^{3}-2x^{2}-4x}{2^{3}} as a single fraction.
\frac{8\left(x^{3}-2x^{2}-4x\right)}{2^{3}}+\frac{8x^{2}\times 2^{3}}{2^{3}}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 8x^{2} times \frac{2^{3}}{2^{3}}.
\frac{8\left(x^{3}-2x^{2}-4x\right)+8x^{2}\times 2^{3}}{2^{3}}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
Since \frac{8\left(x^{3}-2x^{2}-4x\right)}{2^{3}} and \frac{8x^{2}\times 2^{3}}{2^{3}} have the same denominator, add them by adding their numerators.
\frac{8x^{3}-16x^{2}-32x+64x^{2}}{2^{3}}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
Do the multiplications in 8\left(x^{3}-2x^{2}-4x\right)+8x^{2}\times 2^{3}.
\frac{8x^{3}+48x^{2}-32x}{2^{3}}=8x^{2}\left(\frac{x}{8}+\frac{3}{4}\right)
Combine like terms in 8x^{3}-16x^{2}-32x+64x^{2}.
\frac{8x^{3}+48x^{2}-32x}{2^{3}}=8x^{2}\left(\frac{x}{8}+\frac{3\times 2}{8}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8 and 4 is 8. Multiply \frac{3}{4} times \frac{2}{2}.
\frac{8x^{3}+48x^{2}-32x}{2^{3}}=8x^{2}\times \frac{x+3\times 2}{8}
Since \frac{x}{8} and \frac{3\times 2}{8} have the same denominator, add them by adding their numerators.
\frac{8x^{3}+48x^{2}-32x}{2^{3}}=8x^{2}\times \frac{x+6}{8}
Do the multiplications in x+3\times 2.
\frac{8x^{3}+48x^{2}-32x}{2^{3}}=\frac{8\left(x+6\right)}{8}x^{2}
Express 8\times \frac{x+6}{8} as a single fraction.
\frac{8x^{3}+48x^{2}-32x}{2^{3}}=\left(x+6\right)x^{2}
Cancel out 8 and 8.
\frac{8x^{3}+48x^{2}-32x}{2^{3}}=x^{3}+6x^{2}
Use the distributive property to multiply x+6 by x^{2}.
\frac{8x^{3}+48x^{2}-32x}{8}=x^{3}+6x^{2}
Calculate 2 to the power of 3 and get 8.
-4x+6x^{2}+x^{3}=x^{3}+6x^{2}
Divide each term of 8x^{3}+48x^{2}-32x by 8 to get -4x+6x^{2}+x^{3}.
-4x+6x^{2}+x^{3}-x^{3}=6x^{2}
Subtract x^{3} from both sides.
-4x+6x^{2}=6x^{2}
Combine x^{3} and -x^{3} to get 0.
-4x+6x^{2}-6x^{2}=0
Subtract 6x^{2} from both sides.
-4x=0
Combine 6x^{2} and -6x^{2} to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -4 is not equal to 0, x must be equal to 0.