Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x+1}{x-2}-\frac{x-2}{x-2}\right)\times \frac{x^{2}-4x+4}{x^{2}-2x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-2}{x-2}.
\frac{x+1-\left(x-2\right)}{x-2}\times \frac{x^{2}-4x+4}{x^{2}-2x}
Since \frac{x+1}{x-2} and \frac{x-2}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{x+1-x+2}{x-2}\times \frac{x^{2}-4x+4}{x^{2}-2x}
Do the multiplications in x+1-\left(x-2\right).
\frac{3}{x-2}\times \frac{x^{2}-4x+4}{x^{2}-2x}
Combine like terms in x+1-x+2.
\frac{3}{x-2}\times \frac{\left(x-2\right)^{2}}{x\left(x-2\right)}
Factor the expressions that are not already factored in \frac{x^{2}-4x+4}{x^{2}-2x}.
\frac{3}{x-2}\times \frac{x-2}{x}
Cancel out x-2 in both numerator and denominator.
\frac{3\left(x-2\right)}{\left(x-2\right)x}
Multiply \frac{3}{x-2} times \frac{x-2}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{x}
Cancel out x-2 in both numerator and denominator.
\left(\frac{x+1}{x-2}-\frac{x-2}{x-2}\right)\times \frac{x^{2}-4x+4}{x^{2}-2x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-2}{x-2}.
\frac{x+1-\left(x-2\right)}{x-2}\times \frac{x^{2}-4x+4}{x^{2}-2x}
Since \frac{x+1}{x-2} and \frac{x-2}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{x+1-x+2}{x-2}\times \frac{x^{2}-4x+4}{x^{2}-2x}
Do the multiplications in x+1-\left(x-2\right).
\frac{3}{x-2}\times \frac{x^{2}-4x+4}{x^{2}-2x}
Combine like terms in x+1-x+2.
\frac{3}{x-2}\times \frac{\left(x-2\right)^{2}}{x\left(x-2\right)}
Factor the expressions that are not already factored in \frac{x^{2}-4x+4}{x^{2}-2x}.
\frac{3}{x-2}\times \frac{x-2}{x}
Cancel out x-2 in both numerator and denominator.
\frac{3\left(x-2\right)}{\left(x-2\right)x}
Multiply \frac{3}{x-2} times \frac{x-2}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{x}
Cancel out x-2 in both numerator and denominator.