Evaluate
\frac{3x\left(x-2\right)^{2}}{x^{2}+4}
Expand
\frac{3\left(x^{3}-4x^{2}+4x\right)}{x^{2}+4}
Graph
Share
Copied to clipboard
\left(\frac{x+1}{x-2}-\frac{x-2}{x-2}\right)\times \frac{x^{2}-2x}{1}\times \frac{x^{2}-4x+4}{x^{2}+4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-2}{x-2}.
\frac{x+1-\left(x-2\right)}{x-2}\times \frac{x^{2}-2x}{1}\times \frac{x^{2}-4x+4}{x^{2}+4}
Since \frac{x+1}{x-2} and \frac{x-2}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{x+1-x+2}{x-2}\times \frac{x^{2}-2x}{1}\times \frac{x^{2}-4x+4}{x^{2}+4}
Do the multiplications in x+1-\left(x-2\right).
\frac{3}{x-2}\times \frac{x^{2}-2x}{1}\times \frac{x^{2}-4x+4}{x^{2}+4}
Combine like terms in x+1-x+2.
\frac{3}{x-2}\left(x^{2}-2x\right)\times \frac{x^{2}-4x+4}{x^{2}+4}
Anything divided by one gives itself.
\frac{3\left(x^{2}-2x\right)}{x-2}\times \frac{x^{2}-4x+4}{x^{2}+4}
Express \frac{3}{x-2}\left(x^{2}-2x\right) as a single fraction.
\frac{3\left(x^{2}-2x\right)\left(x^{2}-4x+4\right)}{\left(x-2\right)\left(x^{2}+4\right)}
Multiply \frac{3\left(x^{2}-2x\right)}{x-2} times \frac{x^{2}-4x+4}{x^{2}+4} by multiplying numerator times numerator and denominator times denominator.
\frac{3x\left(x-2\right)\left(x-2\right)^{2}}{\left(x-2\right)\left(x^{2}+4\right)}
Factor the expressions that are not already factored.
\frac{3x\left(x-2\right)^{2}}{x^{2}+4}
Cancel out x-2 in both numerator and denominator.
\frac{3x^{3}-12x^{2}+12x}{x^{2}+4}
Expand the expression.
\left(\frac{x+1}{x-2}-\frac{x-2}{x-2}\right)\times \frac{x^{2}-2x}{1}\times \frac{x^{2}-4x+4}{x^{2}+4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-2}{x-2}.
\frac{x+1-\left(x-2\right)}{x-2}\times \frac{x^{2}-2x}{1}\times \frac{x^{2}-4x+4}{x^{2}+4}
Since \frac{x+1}{x-2} and \frac{x-2}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{x+1-x+2}{x-2}\times \frac{x^{2}-2x}{1}\times \frac{x^{2}-4x+4}{x^{2}+4}
Do the multiplications in x+1-\left(x-2\right).
\frac{3}{x-2}\times \frac{x^{2}-2x}{1}\times \frac{x^{2}-4x+4}{x^{2}+4}
Combine like terms in x+1-x+2.
\frac{3}{x-2}\left(x^{2}-2x\right)\times \frac{x^{2}-4x+4}{x^{2}+4}
Anything divided by one gives itself.
\frac{3\left(x^{2}-2x\right)}{x-2}\times \frac{x^{2}-4x+4}{x^{2}+4}
Express \frac{3}{x-2}\left(x^{2}-2x\right) as a single fraction.
\frac{3\left(x^{2}-2x\right)\left(x^{2}-4x+4\right)}{\left(x-2\right)\left(x^{2}+4\right)}
Multiply \frac{3\left(x^{2}-2x\right)}{x-2} times \frac{x^{2}-4x+4}{x^{2}+4} by multiplying numerator times numerator and denominator times denominator.
\frac{3x\left(x-2\right)\left(x-2\right)^{2}}{\left(x-2\right)\left(x^{2}+4\right)}
Factor the expressions that are not already factored.
\frac{3x\left(x-2\right)^{2}}{x^{2}+4}
Cancel out x-2 in both numerator and denominator.
\frac{3x^{3}-12x^{2}+12x}{x^{2}+4}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}