Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x+1}{3\left(x-1\right)}-\frac{4}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Factor 3x-3. Factor 3x^{2}-3.
\left(\frac{\left(x+1\right)\left(x+1\right)}{3\left(x-1\right)\left(x+1\right)}-\frac{4}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-1\right) and 3\left(x-1\right)\left(x+1\right) is 3\left(x-1\right)\left(x+1\right). Multiply \frac{x+1}{3\left(x-1\right)} times \frac{x+1}{x+1}.
\left(\frac{\left(x+1\right)\left(x+1\right)-4}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Since \frac{\left(x+1\right)\left(x+1\right)}{3\left(x-1\right)\left(x+1\right)} and \frac{4}{3\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{x^{2}+x+x+1-4}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Do the multiplications in \left(x+1\right)\left(x+1\right)-4.
\left(\frac{x^{2}+2x-3}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Combine like terms in x^{2}+x+x+1-4.
\left(\frac{\left(x-1\right)\left(x+3\right)}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Factor the expressions that are not already factored in \frac{x^{2}+2x-3}{3\left(x-1\right)\left(x+1\right)}.
\left(\frac{x+3}{3\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Cancel out x-1 in both numerator and denominator.
\left(\frac{x+3}{3\left(x+1\right)}-\frac{x+10}{3\left(x+1\right)}\right)\times \frac{1}{7}
Factor 3x+3.
\frac{x+3-\left(x+10\right)}{3\left(x+1\right)}\times \frac{1}{7}
Since \frac{x+3}{3\left(x+1\right)} and \frac{x+10}{3\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+3-x-10}{3\left(x+1\right)}\times \frac{1}{7}
Do the multiplications in x+3-\left(x+10\right).
\frac{-7}{3\left(x+1\right)}\times \frac{1}{7}
Combine like terms in x+3-x-10.
\frac{-7}{3\left(x+1\right)\times 7}
Multiply \frac{-7}{3\left(x+1\right)} times \frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-7}{21\left(x+1\right)}
Multiply 3 and 7 to get 21.
\frac{-7}{21x+21}
Use the distributive property to multiply 21 by x+1.
\left(\frac{x+1}{3\left(x-1\right)}-\frac{4}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Factor 3x-3. Factor 3x^{2}-3.
\left(\frac{\left(x+1\right)\left(x+1\right)}{3\left(x-1\right)\left(x+1\right)}-\frac{4}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-1\right) and 3\left(x-1\right)\left(x+1\right) is 3\left(x-1\right)\left(x+1\right). Multiply \frac{x+1}{3\left(x-1\right)} times \frac{x+1}{x+1}.
\left(\frac{\left(x+1\right)\left(x+1\right)-4}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Since \frac{\left(x+1\right)\left(x+1\right)}{3\left(x-1\right)\left(x+1\right)} and \frac{4}{3\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{x^{2}+x+x+1-4}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Do the multiplications in \left(x+1\right)\left(x+1\right)-4.
\left(\frac{x^{2}+2x-3}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Combine like terms in x^{2}+x+x+1-4.
\left(\frac{\left(x-1\right)\left(x+3\right)}{3\left(x-1\right)\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Factor the expressions that are not already factored in \frac{x^{2}+2x-3}{3\left(x-1\right)\left(x+1\right)}.
\left(\frac{x+3}{3\left(x+1\right)}-\frac{x+10}{3x+3}\right)\times \frac{1}{7}
Cancel out x-1 in both numerator and denominator.
\left(\frac{x+3}{3\left(x+1\right)}-\frac{x+10}{3\left(x+1\right)}\right)\times \frac{1}{7}
Factor 3x+3.
\frac{x+3-\left(x+10\right)}{3\left(x+1\right)}\times \frac{1}{7}
Since \frac{x+3}{3\left(x+1\right)} and \frac{x+10}{3\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+3-x-10}{3\left(x+1\right)}\times \frac{1}{7}
Do the multiplications in x+3-\left(x+10\right).
\frac{-7}{3\left(x+1\right)}\times \frac{1}{7}
Combine like terms in x+3-x-10.
\frac{-7}{3\left(x+1\right)\times 7}
Multiply \frac{-7}{3\left(x+1\right)} times \frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-7}{21\left(x+1\right)}
Multiply 3 and 7 to get 21.
\frac{-7}{21x+21}
Use the distributive property to multiply 21 by x+1.