Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)}-\frac{\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}-\frac{4x^{2}}{x^{2}-1}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and 1+x is \left(x+1\right)\left(-x+1\right). Multiply \frac{x+1}{1-x} times \frac{x+1}{x+1}. Multiply \frac{1-x}{1+x} times \frac{-x+1}{-x+1}.
\frac{\frac{\left(x+1\right)\left(x+1\right)-\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}-\frac{4x^{2}}{x^{2}-1}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Since \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)} and \frac{\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+x+1+x+x-1-x^{2}+x}{\left(x+1\right)\left(-x+1\right)}-\frac{4x^{2}}{x^{2}-1}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Do the multiplications in \left(x+1\right)\left(x+1\right)-\left(1-x\right)\left(-x+1\right).
\frac{\frac{4x}{\left(x+1\right)\left(-x+1\right)}-\frac{4x^{2}}{x^{2}-1}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Combine like terms in x^{2}+x+1+x+x-1-x^{2}+x.
\frac{\frac{4x}{\left(x+1\right)\left(-x+1\right)}-\frac{4x^{2}}{\left(x-1\right)\left(x+1\right)}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Factor x^{2}-1.
\frac{\frac{-4x}{\left(x-1\right)\left(x+1\right)}-\frac{4x^{2}}{\left(x-1\right)\left(x+1\right)}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+1\right) and \left(x-1\right)\left(x+1\right) is \left(x-1\right)\left(x+1\right). Multiply \frac{4x}{\left(x+1\right)\left(-x+1\right)} times \frac{-1}{-1}.
\frac{\frac{-4x-4x^{2}}{\left(x-1\right)\left(x+1\right)}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Since \frac{-4x}{\left(x-1\right)\left(x+1\right)} and \frac{4x^{2}}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x\left(-x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Factor the expressions that are not already factored in \frac{-4x-4x^{2}}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{-4x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Extract the negative sign in -1-x.
\frac{\frac{-4x}{x-1}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Cancel out x+1 in both numerator and denominator.
\frac{\frac{-4x}{x-1}}{\frac{4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^{2}}}
Factor the expressions that are not already factored in \frac{4x^{2}-4}{x^{2}-2x+1}.
\frac{\frac{-4x}{x-1}}{\frac{4\left(x+1\right)}{x-1}}
Cancel out x-1 in both numerator and denominator.
\frac{-4x\left(x-1\right)}{\left(x-1\right)\times 4\left(x+1\right)}
Divide \frac{-4x}{x-1} by \frac{4\left(x+1\right)}{x-1} by multiplying \frac{-4x}{x-1} by the reciprocal of \frac{4\left(x+1\right)}{x-1}.
\frac{-x}{x+1}
Cancel out 4\left(x-1\right) in both numerator and denominator.
\frac{\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)}-\frac{\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}-\frac{4x^{2}}{x^{2}-1}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and 1+x is \left(x+1\right)\left(-x+1\right). Multiply \frac{x+1}{1-x} times \frac{x+1}{x+1}. Multiply \frac{1-x}{1+x} times \frac{-x+1}{-x+1}.
\frac{\frac{\left(x+1\right)\left(x+1\right)-\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}-\frac{4x^{2}}{x^{2}-1}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Since \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)} and \frac{\left(1-x\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+x+1+x+x-1-x^{2}+x}{\left(x+1\right)\left(-x+1\right)}-\frac{4x^{2}}{x^{2}-1}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Do the multiplications in \left(x+1\right)\left(x+1\right)-\left(1-x\right)\left(-x+1\right).
\frac{\frac{4x}{\left(x+1\right)\left(-x+1\right)}-\frac{4x^{2}}{x^{2}-1}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Combine like terms in x^{2}+x+1+x+x-1-x^{2}+x.
\frac{\frac{4x}{\left(x+1\right)\left(-x+1\right)}-\frac{4x^{2}}{\left(x-1\right)\left(x+1\right)}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Factor x^{2}-1.
\frac{\frac{-4x}{\left(x-1\right)\left(x+1\right)}-\frac{4x^{2}}{\left(x-1\right)\left(x+1\right)}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+1\right) and \left(x-1\right)\left(x+1\right) is \left(x-1\right)\left(x+1\right). Multiply \frac{4x}{\left(x+1\right)\left(-x+1\right)} times \frac{-1}{-1}.
\frac{\frac{-4x-4x^{2}}{\left(x-1\right)\left(x+1\right)}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Since \frac{-4x}{\left(x-1\right)\left(x+1\right)} and \frac{4x^{2}}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x\left(-x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Factor the expressions that are not already factored in \frac{-4x-4x^{2}}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{-4x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Extract the negative sign in -1-x.
\frac{\frac{-4x}{x-1}}{\frac{4x^{2}-4}{x^{2}-2x+1}}
Cancel out x+1 in both numerator and denominator.
\frac{\frac{-4x}{x-1}}{\frac{4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^{2}}}
Factor the expressions that are not already factored in \frac{4x^{2}-4}{x^{2}-2x+1}.
\frac{\frac{-4x}{x-1}}{\frac{4\left(x+1\right)}{x-1}}
Cancel out x-1 in both numerator and denominator.
\frac{-4x\left(x-1\right)}{\left(x-1\right)\times 4\left(x+1\right)}
Divide \frac{-4x}{x-1} by \frac{4\left(x+1\right)}{x-1} by multiplying \frac{-4x}{x-1} by the reciprocal of \frac{4\left(x+1\right)}{x-1}.
\frac{-x}{x+1}
Cancel out 4\left(x-1\right) in both numerator and denominator.