Solve for p (complex solution)
\left\{\begin{matrix}p=\left(6-x\right)^{-\frac{1}{2}}q\left(x+5\right)x^{2}\text{, }&x\neq -5\text{ and }x\neq 0\text{ and }q\neq 0\text{ and }x\neq 6\\p\neq 0\text{, }&x=6\text{ and }q=0\end{matrix}\right.
Solve for q (complex solution)
q=\frac{\sqrt{6-x}p}{\left(x+5\right)x^{2}}
p\neq 0\text{ and }x\neq -5\text{ and }x\neq 0
Solve for p
\left\{\begin{matrix}p=\frac{q\left(x+5\right)x^{2}}{\sqrt{6-x}}\text{, }&x\neq -5\text{ and }x\neq 0\text{ and }q\neq 0\text{ and }x<6\\p\neq 0\text{, }&q=0\text{ and }x=6\end{matrix}\right.
Solve for q
q=\frac{\sqrt{6-x}p}{\left(x+5\right)x^{2}}
p\neq 0\text{ and }x\leq 6\text{ and }x\neq -5\text{ and }x\neq 0
Graph
Share
Copied to clipboard
x\left(x+5\right)qx=p\sqrt{6-x}
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by px\left(x+5\right), the least common multiple of p,x^{2}+5x.
\left(x^{2}+5x\right)qx=p\sqrt{6-x}
Use the distributive property to multiply x by x+5.
\left(x^{2}q+5xq\right)x=p\sqrt{6-x}
Use the distributive property to multiply x^{2}+5x by q.
qx^{3}+5qx^{2}=p\sqrt{6-x}
Use the distributive property to multiply x^{2}q+5xq by x.
p\sqrt{6-x}=qx^{3}+5qx^{2}
Swap sides so that all variable terms are on the left hand side.
\sqrt{6-x}p=qx^{3}+5qx^{2}
The equation is in standard form.
\frac{\sqrt{6-x}p}{\sqrt{6-x}}=\frac{q\left(x+5\right)x^{2}}{\sqrt{6-x}}
Divide both sides by \sqrt{6-x}.
p=\frac{q\left(x+5\right)x^{2}}{\sqrt{6-x}}
Dividing by \sqrt{6-x} undoes the multiplication by \sqrt{6-x}.
p=\left(6-x\right)^{-\frac{1}{2}}q\left(x+5\right)x^{2}
Divide q\left(5+x\right)x^{2} by \sqrt{6-x}.
p=\left(6-x\right)^{-\frac{1}{2}}q\left(x+5\right)x^{2}\text{, }p\neq 0
Variable p cannot be equal to 0.
x\left(x+5\right)qx=p\sqrt{6-x}
Multiply both sides of the equation by px\left(x+5\right), the least common multiple of p,x^{2}+5x.
\left(x^{2}+5x\right)qx=p\sqrt{6-x}
Use the distributive property to multiply x by x+5.
\left(x^{2}q+5xq\right)x=p\sqrt{6-x}
Use the distributive property to multiply x^{2}+5x by q.
qx^{3}+5qx^{2}=p\sqrt{6-x}
Use the distributive property to multiply x^{2}q+5xq by x.
\left(x^{3}+5x^{2}\right)q=p\sqrt{6-x}
Combine all terms containing q.
\left(x^{3}+5x^{2}\right)q=\sqrt{6-x}p
The equation is in standard form.
\frac{\left(x^{3}+5x^{2}\right)q}{x^{3}+5x^{2}}=\frac{\sqrt{6-x}p}{x^{3}+5x^{2}}
Divide both sides by 5x^{2}+x^{3}.
q=\frac{\sqrt{6-x}p}{x^{3}+5x^{2}}
Dividing by 5x^{2}+x^{3} undoes the multiplication by 5x^{2}+x^{3}.
q=\frac{\sqrt{6-x}p}{\left(x+5\right)x^{2}}
Divide p\sqrt{6-x} by 5x^{2}+x^{3}.
x\left(x+5\right)qx=p\sqrt{6-x}
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by px\left(x+5\right), the least common multiple of p,x^{2}+5x.
\left(x^{2}+5x\right)qx=p\sqrt{6-x}
Use the distributive property to multiply x by x+5.
\left(x^{2}q+5xq\right)x=p\sqrt{6-x}
Use the distributive property to multiply x^{2}+5x by q.
qx^{3}+5qx^{2}=p\sqrt{6-x}
Use the distributive property to multiply x^{2}q+5xq by x.
p\sqrt{6-x}=qx^{3}+5qx^{2}
Swap sides so that all variable terms are on the left hand side.
\sqrt{6-x}p=qx^{3}+5qx^{2}
The equation is in standard form.
\frac{\sqrt{6-x}p}{\sqrt{6-x}}=\frac{q\left(x+5\right)x^{2}}{\sqrt{6-x}}
Divide both sides by \sqrt{6-x}.
p=\frac{q\left(x+5\right)x^{2}}{\sqrt{6-x}}
Dividing by \sqrt{6-x} undoes the multiplication by \sqrt{6-x}.
p=\frac{q\left(x+5\right)x^{2}}{\sqrt{6-x}}\text{, }p\neq 0
Variable p cannot be equal to 0.
x\left(x+5\right)qx=p\sqrt{6-x}
Multiply both sides of the equation by px\left(x+5\right), the least common multiple of p,x^{2}+5x.
\left(x^{2}+5x\right)qx=p\sqrt{6-x}
Use the distributive property to multiply x by x+5.
\left(x^{2}q+5xq\right)x=p\sqrt{6-x}
Use the distributive property to multiply x^{2}+5x by q.
qx^{3}+5qx^{2}=p\sqrt{6-x}
Use the distributive property to multiply x^{2}q+5xq by x.
\left(x^{3}+5x^{2}\right)q=p\sqrt{6-x}
Combine all terms containing q.
\left(x^{3}+5x^{2}\right)q=\sqrt{6-x}p
The equation is in standard form.
\frac{\left(x^{3}+5x^{2}\right)q}{x^{3}+5x^{2}}=\frac{\sqrt{6-x}p}{x^{3}+5x^{2}}
Divide both sides by 5x^{2}+x^{3}.
q=\frac{\sqrt{6-x}p}{x^{3}+5x^{2}}
Dividing by 5x^{2}+x^{3} undoes the multiplication by 5x^{2}+x^{3}.
q=\frac{\sqrt{6-x}p}{\left(x+5\right)x^{2}}
Divide p\sqrt{6-x} by 5x^{2}+x^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}