( \frac { m + 2 } { n + 2 } = \frac { 1 } { 2 }
Solve for m
m=\frac{n-2}{2}
n\neq -2
Solve for n
n=2\left(m+1\right)
m\neq -2
Share
Copied to clipboard
2\left(m+2\right)=n+2
Multiply both sides of the equation by 2\left(n+2\right), the least common multiple of n+2,2.
2m+4=n+2
Use the distributive property to multiply 2 by m+2.
2m=n+2-4
Subtract 4 from both sides.
2m=n-2
Subtract 4 from 2 to get -2.
\frac{2m}{2}=\frac{n-2}{2}
Divide both sides by 2.
m=\frac{n-2}{2}
Dividing by 2 undoes the multiplication by 2.
m=\frac{n}{2}-1
Divide n-2 by 2.
2\left(m+2\right)=n+2
Variable n cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 2\left(n+2\right), the least common multiple of n+2,2.
2m+4=n+2
Use the distributive property to multiply 2 by m+2.
n+2=2m+4
Swap sides so that all variable terms are on the left hand side.
n=2m+4-2
Subtract 2 from both sides.
n=2m+2
Subtract 2 from 4 to get 2.
n=2m+2\text{, }n\neq -2
Variable n cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}