Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

3\times \left(\frac{k-2}{2}\right)^{2}=\left(k-1\right)\left(k-3\right)
Multiply both sides of the equation by 3.
3\times \frac{\left(k-2\right)^{2}}{2^{2}}=\left(k-1\right)\left(k-3\right)
To raise \frac{k-2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{3\left(k-2\right)^{2}}{2^{2}}=\left(k-1\right)\left(k-3\right)
Express 3\times \frac{\left(k-2\right)^{2}}{2^{2}} as a single fraction.
\frac{3\left(k-2\right)^{2}}{2^{2}}=k^{2}-4k+3
Use the distributive property to multiply k-1 by k-3 and combine like terms.
\frac{3\left(k^{2}-4k+4\right)}{2^{2}}=k^{2}-4k+3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k-2\right)^{2}.
\frac{3\left(k^{2}-4k+4\right)}{4}=k^{2}-4k+3
Calculate 2 to the power of 2 and get 4.
\frac{3\left(k^{2}-4k+4\right)}{4}-k^{2}=-4k+3
Subtract k^{2} from both sides.
\frac{3k^{2}-12k+12}{4}-k^{2}=-4k+3
Use the distributive property to multiply 3 by k^{2}-4k+4.
\frac{3}{4}k^{2}-3k+3-k^{2}=-4k+3
Divide each term of 3k^{2}-12k+12 by 4 to get \frac{3}{4}k^{2}-3k+3.
-\frac{1}{4}k^{2}-3k+3=-4k+3
Combine \frac{3}{4}k^{2} and -k^{2} to get -\frac{1}{4}k^{2}.
-\frac{1}{4}k^{2}-3k+3+4k=3
Add 4k to both sides.
-\frac{1}{4}k^{2}+k+3=3
Combine -3k and 4k to get k.
-\frac{1}{4}k^{2}+k+3-3=0
Subtract 3 from both sides.
-\frac{1}{4}k^{2}+k=0
Subtract 3 from 3 to get 0.
k\left(-\frac{1}{4}k+1\right)=0
Factor out k.
k=0 k=4
To find equation solutions, solve k=0 and -\frac{k}{4}+1=0.
3\times \left(\frac{k-2}{2}\right)^{2}=\left(k-1\right)\left(k-3\right)
Multiply both sides of the equation by 3.
3\times \frac{\left(k-2\right)^{2}}{2^{2}}=\left(k-1\right)\left(k-3\right)
To raise \frac{k-2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{3\left(k-2\right)^{2}}{2^{2}}=\left(k-1\right)\left(k-3\right)
Express 3\times \frac{\left(k-2\right)^{2}}{2^{2}} as a single fraction.
\frac{3\left(k-2\right)^{2}}{2^{2}}=k^{2}-4k+3
Use the distributive property to multiply k-1 by k-3 and combine like terms.
\frac{3\left(k^{2}-4k+4\right)}{2^{2}}=k^{2}-4k+3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k-2\right)^{2}.
\frac{3\left(k^{2}-4k+4\right)}{4}=k^{2}-4k+3
Calculate 2 to the power of 2 and get 4.
\frac{3\left(k^{2}-4k+4\right)}{4}-k^{2}=-4k+3
Subtract k^{2} from both sides.
\frac{3k^{2}-12k+12}{4}-k^{2}=-4k+3
Use the distributive property to multiply 3 by k^{2}-4k+4.
\frac{3}{4}k^{2}-3k+3-k^{2}=-4k+3
Divide each term of 3k^{2}-12k+12 by 4 to get \frac{3}{4}k^{2}-3k+3.
-\frac{1}{4}k^{2}-3k+3=-4k+3
Combine \frac{3}{4}k^{2} and -k^{2} to get -\frac{1}{4}k^{2}.
-\frac{1}{4}k^{2}-3k+3+4k=3
Add 4k to both sides.
-\frac{1}{4}k^{2}+k+3=3
Combine -3k and 4k to get k.
-\frac{1}{4}k^{2}+k+3-3=0
Subtract 3 from both sides.
-\frac{1}{4}k^{2}+k=0
Subtract 3 from 3 to get 0.
k=\frac{-1±\sqrt{1^{2}}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, 1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-1±1}{2\left(-\frac{1}{4}\right)}
Take the square root of 1^{2}.
k=\frac{-1±1}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
k=\frac{0}{-\frac{1}{2}}
Now solve the equation k=\frac{-1±1}{-\frac{1}{2}} when ± is plus. Add -1 to 1.
k=0
Divide 0 by -\frac{1}{2} by multiplying 0 by the reciprocal of -\frac{1}{2}.
k=-\frac{2}{-\frac{1}{2}}
Now solve the equation k=\frac{-1±1}{-\frac{1}{2}} when ± is minus. Subtract 1 from -1.
k=4
Divide -2 by -\frac{1}{2} by multiplying -2 by the reciprocal of -\frac{1}{2}.
k=0 k=4
The equation is now solved.
3\times \left(\frac{k-2}{2}\right)^{2}=\left(k-1\right)\left(k-3\right)
Multiply both sides of the equation by 3.
3\times \frac{\left(k-2\right)^{2}}{2^{2}}=\left(k-1\right)\left(k-3\right)
To raise \frac{k-2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{3\left(k-2\right)^{2}}{2^{2}}=\left(k-1\right)\left(k-3\right)
Express 3\times \frac{\left(k-2\right)^{2}}{2^{2}} as a single fraction.
\frac{3\left(k-2\right)^{2}}{2^{2}}=k^{2}-4k+3
Use the distributive property to multiply k-1 by k-3 and combine like terms.
\frac{3\left(k^{2}-4k+4\right)}{2^{2}}=k^{2}-4k+3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k-2\right)^{2}.
\frac{3\left(k^{2}-4k+4\right)}{4}=k^{2}-4k+3
Calculate 2 to the power of 2 and get 4.
\frac{3\left(k^{2}-4k+4\right)}{4}-k^{2}=-4k+3
Subtract k^{2} from both sides.
\frac{3k^{2}-12k+12}{4}-k^{2}=-4k+3
Use the distributive property to multiply 3 by k^{2}-4k+4.
\frac{3}{4}k^{2}-3k+3-k^{2}=-4k+3
Divide each term of 3k^{2}-12k+12 by 4 to get \frac{3}{4}k^{2}-3k+3.
-\frac{1}{4}k^{2}-3k+3=-4k+3
Combine \frac{3}{4}k^{2} and -k^{2} to get -\frac{1}{4}k^{2}.
-\frac{1}{4}k^{2}-3k+3+4k=3
Add 4k to both sides.
-\frac{1}{4}k^{2}+k+3=3
Combine -3k and 4k to get k.
-\frac{1}{4}k^{2}+k=3-3
Subtract 3 from both sides.
-\frac{1}{4}k^{2}+k=0
Subtract 3 from 3 to get 0.
\frac{-\frac{1}{4}k^{2}+k}{-\frac{1}{4}}=\frac{0}{-\frac{1}{4}}
Multiply both sides by -4.
k^{2}+\frac{1}{-\frac{1}{4}}k=\frac{0}{-\frac{1}{4}}
Dividing by -\frac{1}{4} undoes the multiplication by -\frac{1}{4}.
k^{2}-4k=\frac{0}{-\frac{1}{4}}
Divide 1 by -\frac{1}{4} by multiplying 1 by the reciprocal of -\frac{1}{4}.
k^{2}-4k=0
Divide 0 by -\frac{1}{4} by multiplying 0 by the reciprocal of -\frac{1}{4}.
k^{2}-4k+\left(-2\right)^{2}=\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-4k+4=4
Square -2.
\left(k-2\right)^{2}=4
Factor k^{2}-4k+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-2\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
k-2=2 k-2=-2
Simplify.
k=4 k=0
Add 2 to both sides of the equation.