Evaluate
\frac{1}{216k^{3}}
Expand
\frac{1}{216k^{3}}
Share
Copied to clipboard
\left(\frac{k^{-2}\times 6}{k^{0}k^{-3}}\right)^{-3}
To multiply powers of the same base, add their exponents. Add -4 and 2 to get -2.
\left(\frac{k^{-2}\times 6}{k^{-3}}\right)^{-3}
To multiply powers of the same base, add their exponents. Add 0 and -3 to get -3.
\left(6k^{1}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
6^{-3}\left(k^{1}\right)^{-3}
Expand \left(6k^{1}\right)^{-3}.
6^{-3}k^{-3}
To raise a power to another power, multiply the exponents. Multiply 1 and -3 to get -3.
\frac{1}{216}k^{-3}
Calculate 6 to the power of -3 and get \frac{1}{216}.
\left(\frac{k^{-2}\times 6}{k^{0}k^{-3}}\right)^{-3}
To multiply powers of the same base, add their exponents. Add -4 and 2 to get -2.
\left(\frac{k^{-2}\times 6}{k^{-3}}\right)^{-3}
To multiply powers of the same base, add their exponents. Add 0 and -3 to get -3.
\left(6k^{1}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
6^{-3}\left(k^{1}\right)^{-3}
Expand \left(6k^{1}\right)^{-3}.
6^{-3}k^{-3}
To raise a power to another power, multiply the exponents. Multiply 1 and -3 to get -3.
\frac{1}{216}k^{-3}
Calculate 6 to the power of -3 and get \frac{1}{216}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}