Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{k^{-2}\times 6}{k^{0}k^{-3}}\right)^{-3}
To multiply powers of the same base, add their exponents. Add -4 and 2 to get -2.
\left(\frac{k^{-2}\times 6}{k^{-3}}\right)^{-3}
To multiply powers of the same base, add their exponents. Add 0 and -3 to get -3.
\left(6k^{1}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
6^{-3}\left(k^{1}\right)^{-3}
Expand \left(6k^{1}\right)^{-3}.
6^{-3}k^{-3}
To raise a power to another power, multiply the exponents. Multiply 1 and -3 to get -3.
\frac{1}{216}k^{-3}
Calculate 6 to the power of -3 and get \frac{1}{216}.
\left(\frac{k^{-2}\times 6}{k^{0}k^{-3}}\right)^{-3}
To multiply powers of the same base, add their exponents. Add -4 and 2 to get -2.
\left(\frac{k^{-2}\times 6}{k^{-3}}\right)^{-3}
To multiply powers of the same base, add their exponents. Add 0 and -3 to get -3.
\left(6k^{1}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
6^{-3}\left(k^{1}\right)^{-3}
Expand \left(6k^{1}\right)^{-3}.
6^{-3}k^{-3}
To raise a power to another power, multiply the exponents. Multiply 1 and -3 to get -3.
\frac{1}{216}k^{-3}
Calculate 6 to the power of -3 and get \frac{1}{216}.