Solve for k
k=1-3v
Solve for v
v=\frac{1-k}{3}
Share
Copied to clipboard
\left(k+1\right)\times 2=4+2v\left(-3\right)
Multiply both sides of the equation by 2.
2k+2=4+2v\left(-3\right)
Use the distributive property to multiply k+1 by 2.
2k+2=4-6v
Multiply 2 and -3 to get -6.
2k=4-6v-2
Subtract 2 from both sides.
2k=2-6v
Subtract 2 from 4 to get 2.
\frac{2k}{2}=\frac{2-6v}{2}
Divide both sides by 2.
k=\frac{2-6v}{2}
Dividing by 2 undoes the multiplication by 2.
k=1-3v
Divide 2-6v by 2.
\left(k+1\right)\times 2=4+2v\left(-3\right)
Multiply both sides of the equation by 2.
2k+2=4+2v\left(-3\right)
Use the distributive property to multiply k+1 by 2.
2k+2=4-6v
Multiply 2 and -3 to get -6.
4-6v=2k+2
Swap sides so that all variable terms are on the left hand side.
-6v=2k+2-4
Subtract 4 from both sides.
-6v=2k-2
Subtract 4 from 2 to get -2.
\frac{-6v}{-6}=\frac{2k-2}{-6}
Divide both sides by -6.
v=\frac{2k-2}{-6}
Dividing by -6 undoes the multiplication by -6.
v=\frac{1-k}{3}
Divide -2+2k by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}