Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(c+d\right)\left(c-d\right)}{c\left(c-d\right)}-\frac{2cc}{c\left(c-d\right)}\right)\times \frac{d-c}{c^{2}+d^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of c and c-d is c\left(c-d\right). Multiply \frac{c+d}{c} times \frac{c-d}{c-d}. Multiply \frac{2c}{c-d} times \frac{c}{c}.
\frac{\left(c+d\right)\left(c-d\right)-2cc}{c\left(c-d\right)}\times \frac{d-c}{c^{2}+d^{2}}
Since \frac{\left(c+d\right)\left(c-d\right)}{c\left(c-d\right)} and \frac{2cc}{c\left(c-d\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{c^{2}-cd+dc-d^{2}-2c^{2}}{c\left(c-d\right)}\times \frac{d-c}{c^{2}+d^{2}}
Do the multiplications in \left(c+d\right)\left(c-d\right)-2cc.
\frac{-c^{2}-d^{2}}{c\left(c-d\right)}\times \frac{d-c}{c^{2}+d^{2}}
Combine like terms in c^{2}-cd+dc-d^{2}-2c^{2}.
\frac{\left(-c^{2}-d^{2}\right)\left(d-c\right)}{c\left(c-d\right)\left(c^{2}+d^{2}\right)}
Multiply \frac{-c^{2}-d^{2}}{c\left(c-d\right)} times \frac{d-c}{c^{2}+d^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-1\right)\left(c-d\right)\left(c^{2}+d^{2}\right)}{c\left(c-d\right)\left(c^{2}+d^{2}\right)}
Extract the negative sign in -c^{2}-d^{2}. Extract the negative sign in d-c.
\frac{-\left(-1\right)}{c}
Cancel out \left(c-d\right)\left(c^{2}+d^{2}\right) in both numerator and denominator.
\frac{1}{c}
Multiply -1 and -1 to get 1.
\left(\frac{\left(c+d\right)\left(c-d\right)}{c\left(c-d\right)}-\frac{2cc}{c\left(c-d\right)}\right)\times \frac{d-c}{c^{2}+d^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of c and c-d is c\left(c-d\right). Multiply \frac{c+d}{c} times \frac{c-d}{c-d}. Multiply \frac{2c}{c-d} times \frac{c}{c}.
\frac{\left(c+d\right)\left(c-d\right)-2cc}{c\left(c-d\right)}\times \frac{d-c}{c^{2}+d^{2}}
Since \frac{\left(c+d\right)\left(c-d\right)}{c\left(c-d\right)} and \frac{2cc}{c\left(c-d\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{c^{2}-cd+dc-d^{2}-2c^{2}}{c\left(c-d\right)}\times \frac{d-c}{c^{2}+d^{2}}
Do the multiplications in \left(c+d\right)\left(c-d\right)-2cc.
\frac{-c^{2}-d^{2}}{c\left(c-d\right)}\times \frac{d-c}{c^{2}+d^{2}}
Combine like terms in c^{2}-cd+dc-d^{2}-2c^{2}.
\frac{\left(-c^{2}-d^{2}\right)\left(d-c\right)}{c\left(c-d\right)\left(c^{2}+d^{2}\right)}
Multiply \frac{-c^{2}-d^{2}}{c\left(c-d\right)} times \frac{d-c}{c^{2}+d^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-1\right)\left(c-d\right)\left(c^{2}+d^{2}\right)}{c\left(c-d\right)\left(c^{2}+d^{2}\right)}
Extract the negative sign in -c^{2}-d^{2}. Extract the negative sign in d-c.
\frac{-\left(-1\right)}{c}
Cancel out \left(c-d\right)\left(c^{2}+d^{2}\right) in both numerator and denominator.
\frac{1}{c}
Multiply -1 and -1 to get 1.