Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{b\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)\times \frac{b+a}{ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{b}{a-b} times \frac{a+b}{a+b}. Multiply \frac{b}{a+b} times \frac{a-b}{a-b}.
\frac{b\left(a+b\right)-b\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\times \frac{b+a}{ab}
Since \frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{b\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{ba+b^{2}-ba+b^{2}}{\left(a+b\right)\left(a-b\right)}\times \frac{b+a}{ab}
Do the multiplications in b\left(a+b\right)-b\left(a-b\right).
\frac{2b^{2}}{\left(a+b\right)\left(a-b\right)}\times \frac{b+a}{ab}
Combine like terms in ba+b^{2}-ba+b^{2}.
\frac{2b^{2}\left(b+a\right)}{\left(a+b\right)\left(a-b\right)ab}
Multiply \frac{2b^{2}}{\left(a+b\right)\left(a-b\right)} times \frac{b+a}{ab} by multiplying numerator times numerator and denominator times denominator.
\frac{2b}{a\left(a-b\right)}
Cancel out b\left(a+b\right) in both numerator and denominator.
\frac{2b}{a^{2}-ab}
Use the distributive property to multiply a by a-b.
\left(\frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{b\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)\times \frac{b+a}{ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{b}{a-b} times \frac{a+b}{a+b}. Multiply \frac{b}{a+b} times \frac{a-b}{a-b}.
\frac{b\left(a+b\right)-b\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\times \frac{b+a}{ab}
Since \frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{b\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{ba+b^{2}-ba+b^{2}}{\left(a+b\right)\left(a-b\right)}\times \frac{b+a}{ab}
Do the multiplications in b\left(a+b\right)-b\left(a-b\right).
\frac{2b^{2}}{\left(a+b\right)\left(a-b\right)}\times \frac{b+a}{ab}
Combine like terms in ba+b^{2}-ba+b^{2}.
\frac{2b^{2}\left(b+a\right)}{\left(a+b\right)\left(a-b\right)ab}
Multiply \frac{2b^{2}}{\left(a+b\right)\left(a-b\right)} times \frac{b+a}{ab} by multiplying numerator times numerator and denominator times denominator.
\frac{2b}{a\left(a-b\right)}
Cancel out b\left(a+b\right) in both numerator and denominator.
\frac{2b}{a^{2}-ab}
Use the distributive property to multiply a by a-b.