Solve for R
\left\{\begin{matrix}R=\frac{750aw}{30b-aw}\text{, }&b\neq \frac{aw}{30}\text{ and }w\neq 0\\R\in \mathrm{R}\text{, }&b=0\text{ and }a=0\text{ and }w\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{30Rb}{w\left(R+750\right)}\text{, }&R\neq -750\text{ and }w\neq 0\\a\in \mathrm{R}\text{, }&b=0\text{ and }R=-750\text{ and }w\neq 0\end{matrix}\right.
Share
Copied to clipboard
\left(\frac{b}{25w}-\frac{a}{750}\right)R\times 750w=a\times 750w
Multiply both sides of the equation by 750w, the least common multiple of 25w,750.
\left(\frac{30b}{750w}-\frac{aw}{750w}\right)R\times 750w=a\times 750w
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25w and 750 is 750w. Multiply \frac{b}{25w} times \frac{30}{30}. Multiply \frac{a}{750} times \frac{w}{w}.
\frac{30b-aw}{750w}R\times 750w=a\times 750w
Since \frac{30b}{750w} and \frac{aw}{750w} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(30b-aw\right)R}{750w}\times 750w=a\times 750w
Express \frac{30b-aw}{750w}R as a single fraction.
\frac{\left(30b-aw\right)R\times 750}{750w}w=a\times 750w
Express \frac{\left(30b-aw\right)R}{750w}\times 750 as a single fraction.
\frac{R\left(-aw+30b\right)}{w}w=a\times 750w
Cancel out 750 in both numerator and denominator.
\frac{R\left(-aw+30b\right)w}{w}=a\times 750w
Express \frac{R\left(-aw+30b\right)}{w}w as a single fraction.
R\left(-aw+30b\right)=a\times 750w
Cancel out w in both numerator and denominator.
-Raw+30Rb=a\times 750w
Use the distributive property to multiply R by -aw+30b.
\left(-aw+30b\right)R=a\times 750w
Combine all terms containing R.
\left(30b-aw\right)R=750aw
The equation is in standard form.
\frac{\left(30b-aw\right)R}{30b-aw}=\frac{750aw}{30b-aw}
Divide both sides by -aw+30b.
R=\frac{750aw}{30b-aw}
Dividing by -aw+30b undoes the multiplication by -aw+30b.
\left(\frac{b}{25w}-\frac{a}{750}\right)R\times 750w=a\times 750w
Multiply both sides of the equation by 750w, the least common multiple of 25w,750.
\left(\frac{30b}{750w}-\frac{aw}{750w}\right)R\times 750w=a\times 750w
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25w and 750 is 750w. Multiply \frac{b}{25w} times \frac{30}{30}. Multiply \frac{a}{750} times \frac{w}{w}.
\frac{30b-aw}{750w}R\times 750w=a\times 750w
Since \frac{30b}{750w} and \frac{aw}{750w} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(30b-aw\right)R}{750w}\times 750w=a\times 750w
Express \frac{30b-aw}{750w}R as a single fraction.
\frac{\left(30b-aw\right)R\times 750}{750w}w=a\times 750w
Express \frac{\left(30b-aw\right)R}{750w}\times 750 as a single fraction.
\frac{R\left(-aw+30b\right)}{w}w=a\times 750w
Cancel out 750 in both numerator and denominator.
\frac{R\left(-aw+30b\right)w}{w}=a\times 750w
Express \frac{R\left(-aw+30b\right)}{w}w as a single fraction.
R\left(-aw+30b\right)=a\times 750w
Cancel out w in both numerator and denominator.
-Raw+30Rb=a\times 750w
Use the distributive property to multiply R by -aw+30b.
-Raw+30Rb-a\times 750w=0
Subtract a\times 750w from both sides.
-Raw+30Rb-750aw=0
Multiply -1 and 750 to get -750.
-Raw-750aw=-30Rb
Subtract 30Rb from both sides. Anything subtracted from zero gives its negation.
\left(-Rw-750w\right)a=-30Rb
Combine all terms containing a.
\frac{\left(-Rw-750w\right)a}{-Rw-750w}=-\frac{30Rb}{-Rw-750w}
Divide both sides by -Rw-750w.
a=-\frac{30Rb}{-Rw-750w}
Dividing by -Rw-750w undoes the multiplication by -Rw-750w.
a=\frac{30Rb}{w\left(R+750\right)}
Divide -30Rb by -Rw-750w.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}