Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

25\left(\left(\frac{b+1}{5}\right)^{2}-\frac{b+1}{5}\times \frac{1-b}{5}\right)-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Multiply both sides of the equation by 25, the least common multiple of 5,25.
25\left(\frac{\left(b+1\right)^{2}}{5^{2}}-\frac{b+1}{5}\times \frac{1-b}{5}\right)-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
To raise \frac{b+1}{5} to a power, raise both numerator and denominator to the power and then divide.
25\left(\frac{\left(b+1\right)^{2}}{5^{2}}-\frac{\left(b+1\right)\left(1-b\right)}{5\times 5}\right)-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Multiply \frac{b+1}{5} times \frac{1-b}{5} by multiplying numerator times numerator and denominator times denominator.
25\left(\frac{\left(b+1\right)^{2}}{5^{2}}-\frac{\left(b+1\right)\left(1-b\right)}{25}\right)-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Multiply 5 and 5 to get 25.
25\left(\frac{\left(b+1\right)^{2}}{25}-\frac{\left(b+1\right)\left(1-b\right)}{25}\right)-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
To add or subtract expressions, expand them to make their denominators the same. Expand 5^{2}.
25\times \frac{\left(b+1\right)^{2}-\left(b+1\right)\left(1-b\right)}{25}-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Since \frac{\left(b+1\right)^{2}}{25} and \frac{\left(b+1\right)\left(1-b\right)}{25} have the same denominator, subtract them by subtracting their numerators.
25\times \frac{b^{2}+2b+1-b+b^{2}+b-1}{25}-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Do the multiplications in \left(b+1\right)^{2}-\left(b+1\right)\left(1-b\right).
25\times \frac{2b^{2}+2b}{25}-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Combine like terms in b^{2}+2b+1-b+b^{2}+b-1.
\frac{25\left(2b^{2}+2b\right)}{25}-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Express 25\times \frac{2b^{2}+2b}{25} as a single fraction.
2b^{2}+2b-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Cancel out 25 and 25.
2b^{2}+2b-25\times \frac{\left(1-b\right)^{2}}{5^{2}}=b^{2}+15
To raise \frac{1-b}{5} to a power, raise both numerator and denominator to the power and then divide.
2b^{2}+2b-\frac{25\left(1-b\right)^{2}}{5^{2}}=b^{2}+15
Express 25\times \frac{\left(1-b\right)^{2}}{5^{2}} as a single fraction.
2b^{2}+2b-\frac{25\left(1-2b+b^{2}\right)}{5^{2}}=b^{2}+15
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-b\right)^{2}.
2b^{2}+2b-\frac{25\left(1-2b+b^{2}\right)}{25}=b^{2}+15
Calculate 5 to the power of 2 and get 25.
2b^{2}+2b-\left(1-2b+b^{2}\right)=b^{2}+15
Cancel out 25 and 25.
2b^{2}+2b-1+2b-b^{2}=b^{2}+15
To find the opposite of 1-2b+b^{2}, find the opposite of each term.
2b^{2}+4b-1-b^{2}=b^{2}+15
Combine 2b and 2b to get 4b.
b^{2}+4b-1=b^{2}+15
Combine 2b^{2} and -b^{2} to get b^{2}.
b^{2}+4b-1-b^{2}=15
Subtract b^{2} from both sides.
4b-1=15
Combine b^{2} and -b^{2} to get 0.
4b=15+1
Add 1 to both sides.
4b=16
Add 15 and 1 to get 16.
b=\frac{16}{4}
Divide both sides by 4.
b=4
Divide 16 by 4 to get 4.