Solve for b
b=4
Share
Copied to clipboard
25\left(\left(\frac{b+1}{5}\right)^{2}-\frac{b+1}{5}\times \frac{1-b}{5}\right)-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Multiply both sides of the equation by 25, the least common multiple of 5,25.
25\left(\frac{\left(b+1\right)^{2}}{5^{2}}-\frac{b+1}{5}\times \frac{1-b}{5}\right)-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
To raise \frac{b+1}{5} to a power, raise both numerator and denominator to the power and then divide.
25\left(\frac{\left(b+1\right)^{2}}{5^{2}}-\frac{\left(b+1\right)\left(1-b\right)}{5\times 5}\right)-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Multiply \frac{b+1}{5} times \frac{1-b}{5} by multiplying numerator times numerator and denominator times denominator.
25\left(\frac{\left(b+1\right)^{2}}{5^{2}}-\frac{\left(b+1\right)\left(1-b\right)}{25}\right)-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Multiply 5 and 5 to get 25.
25\left(\frac{\left(b+1\right)^{2}}{25}-\frac{\left(b+1\right)\left(1-b\right)}{25}\right)-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
To add or subtract expressions, expand them to make their denominators the same. Expand 5^{2}.
25\times \frac{\left(b+1\right)^{2}-\left(b+1\right)\left(1-b\right)}{25}-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Since \frac{\left(b+1\right)^{2}}{25} and \frac{\left(b+1\right)\left(1-b\right)}{25} have the same denominator, subtract them by subtracting their numerators.
25\times \frac{b^{2}+2b+1-b+b^{2}+b-1}{25}-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Do the multiplications in \left(b+1\right)^{2}-\left(b+1\right)\left(1-b\right).
25\times \frac{2b^{2}+2b}{25}-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Combine like terms in b^{2}+2b+1-b+b^{2}+b-1.
\frac{25\left(2b^{2}+2b\right)}{25}-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Express 25\times \frac{2b^{2}+2b}{25} as a single fraction.
2b^{2}+2b-25\times \left(\frac{1-b}{5}\right)^{2}=b^{2}+15
Cancel out 25 and 25.
2b^{2}+2b-25\times \frac{\left(1-b\right)^{2}}{5^{2}}=b^{2}+15
To raise \frac{1-b}{5} to a power, raise both numerator and denominator to the power and then divide.
2b^{2}+2b-\frac{25\left(1-b\right)^{2}}{5^{2}}=b^{2}+15
Express 25\times \frac{\left(1-b\right)^{2}}{5^{2}} as a single fraction.
2b^{2}+2b-\frac{25\left(1-2b+b^{2}\right)}{5^{2}}=b^{2}+15
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-b\right)^{2}.
2b^{2}+2b-\frac{25\left(1-2b+b^{2}\right)}{25}=b^{2}+15
Calculate 5 to the power of 2 and get 25.
2b^{2}+2b-\left(1-2b+b^{2}\right)=b^{2}+15
Cancel out 25 and 25.
2b^{2}+2b-1+2b-b^{2}=b^{2}+15
To find the opposite of 1-2b+b^{2}, find the opposite of each term.
2b^{2}+4b-1-b^{2}=b^{2}+15
Combine 2b and 2b to get 4b.
b^{2}+4b-1=b^{2}+15
Combine 2b^{2} and -b^{2} to get b^{2}.
b^{2}+4b-1-b^{2}=15
Subtract b^{2} from both sides.
4b-1=15
Combine b^{2} and -b^{2} to get 0.
4b=15+1
Add 1 to both sides.
4b=16
Add 15 and 1 to get 16.
b=\frac{16}{4}
Divide both sides by 4.
b=4
Divide 16 by 4 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}