Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{a}{a-b}\right)^{2}\times \frac{2a-2b}{3a+3b}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
Combine -b and b to get 0.
\frac{a^{2}}{\left(a-b\right)^{2}}\times \frac{2a-2b}{3a+3b}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
To raise \frac{a}{a-b} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
Multiply \frac{a^{2}}{\left(a-b\right)^{2}} times \frac{2a-2b}{3a+3b} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{a^{2}b}{\left(a^{2}-b^{2}\right)a}
Divide \frac{a^{2}}{a^{2}-b^{2}} by \frac{a}{b} by multiplying \frac{a^{2}}{a^{2}-b^{2}} by the reciprocal of \frac{a}{b}.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{ab}{a^{2}-b^{2}}
Cancel out a in both numerator and denominator.
\frac{a^{2}\left(2a-2b\right)}{3\left(a+b\right)\left(a-b\right)^{2}}-\frac{ab}{\left(a+b\right)\left(a-b\right)}
Factor \left(a-b\right)^{2}\left(3a+3b\right). Factor a^{2}-b^{2}.
\frac{-a^{2}\left(2a-2b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}-\frac{ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a+b\right)\left(a-b\right)^{2} and \left(a+b\right)\left(a-b\right) is -3\left(a+b\right)\left(a-b\right)^{2}. Multiply \frac{a^{2}\left(2a-2b\right)}{3\left(a+b\right)\left(a-b\right)^{2}} times \frac{-1}{-1}. Multiply \frac{ab}{\left(a+b\right)\left(a-b\right)} times \frac{-3\left(a-b\right)}{-3\left(a-b\right)}.
\frac{-a^{2}\left(2a-2b\right)-ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}
Since \frac{-a^{2}\left(2a-2b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}} and \frac{ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a^{3}+2a^{2}b+3a^{2}b-3ab^{2}}{-3\left(a+b\right)\left(a-b\right)^{2}}
Do the multiplications in -a^{2}\left(2a-2b\right)-ab\left(-3\right)\left(a-b\right).
\frac{-2a^{3}-3ab^{2}+5a^{2}b}{-3\left(a+b\right)\left(a-b\right)^{2}}
Combine like terms in -2a^{3}+2a^{2}b+3a^{2}b-3ab^{2}.
\frac{-2a^{3}-3ab^{2}+5a^{2}b}{-3a^{3}+3ab^{2}-3b^{3}+3ba^{2}}
Expand -3\left(a+b\right)\left(a-b\right)^{2}.
\frac{a\left(-a+b\right)\left(2a-3b\right)}{3\left(a+b\right)\left(a-b\right)\left(-a+b\right)}
Factor the expressions that are not already factored.
\frac{-a\left(a-b\right)\left(2a-3b\right)}{3\left(a+b\right)\left(a-b\right)\left(-a+b\right)}
Extract the negative sign in -a+b.
\frac{-a\left(2a-3b\right)}{3\left(a+b\right)\left(-a+b\right)}
Cancel out a-b in both numerator and denominator.
\frac{-2a^{2}+3ab}{-3a^{2}+3b^{2}}
Expand the expression.
\left(\frac{a}{a-b}\right)^{2}\times \frac{2a-2b}{3a+3b}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
Combine -b and b to get 0.
\frac{a^{2}}{\left(a-b\right)^{2}}\times \frac{2a-2b}{3a+3b}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
To raise \frac{a}{a-b} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
Multiply \frac{a^{2}}{\left(a-b\right)^{2}} times \frac{2a-2b}{3a+3b} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{a^{2}b}{\left(a^{2}-b^{2}\right)a}
Divide \frac{a^{2}}{a^{2}-b^{2}} by \frac{a}{b} by multiplying \frac{a^{2}}{a^{2}-b^{2}} by the reciprocal of \frac{a}{b}.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{ab}{a^{2}-b^{2}}
Cancel out a in both numerator and denominator.
\frac{a^{2}\left(2a-2b\right)}{3\left(a+b\right)\left(a-b\right)^{2}}-\frac{ab}{\left(a+b\right)\left(a-b\right)}
Factor \left(a-b\right)^{2}\left(3a+3b\right). Factor a^{2}-b^{2}.
\frac{-a^{2}\left(2a-2b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}-\frac{ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a+b\right)\left(a-b\right)^{2} and \left(a+b\right)\left(a-b\right) is -3\left(a+b\right)\left(a-b\right)^{2}. Multiply \frac{a^{2}\left(2a-2b\right)}{3\left(a+b\right)\left(a-b\right)^{2}} times \frac{-1}{-1}. Multiply \frac{ab}{\left(a+b\right)\left(a-b\right)} times \frac{-3\left(a-b\right)}{-3\left(a-b\right)}.
\frac{-a^{2}\left(2a-2b\right)-ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}
Since \frac{-a^{2}\left(2a-2b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}} and \frac{ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a^{3}+2a^{2}b+3a^{2}b-3ab^{2}}{-3\left(a+b\right)\left(a-b\right)^{2}}
Do the multiplications in -a^{2}\left(2a-2b\right)-ab\left(-3\right)\left(a-b\right).
\frac{-2a^{3}-3ab^{2}+5a^{2}b}{-3\left(a+b\right)\left(a-b\right)^{2}}
Combine like terms in -2a^{3}+2a^{2}b+3a^{2}b-3ab^{2}.
\frac{-2a^{3}-3ab^{2}+5a^{2}b}{-3a^{3}+3ab^{2}-3b^{3}+3ba^{2}}
Expand -3\left(a+b\right)\left(a-b\right)^{2}.
\frac{a\left(-a+b\right)\left(2a-3b\right)}{3\left(a+b\right)\left(a-b\right)\left(-a+b\right)}
Factor the expressions that are not already factored.
\frac{-a\left(a-b\right)\left(2a-3b\right)}{3\left(a+b\right)\left(a-b\right)\left(-a+b\right)}
Extract the negative sign in -a+b.
\frac{-a\left(2a-3b\right)}{3\left(a+b\right)\left(-a+b\right)}
Cancel out a-b in both numerator and denominator.
\frac{-2a^{2}+3ab}{-3a^{2}+3b^{2}}
Expand the expression.