Evaluate
\frac{a\left(2a-3b\right)}{3\left(a^{2}-b^{2}\right)}
Expand
-\frac{3ab-2a^{2}}{3\left(a^{2}-b^{2}\right)}
Share
Copied to clipboard
\left(\frac{a}{a-b}\right)^{2}\times \frac{2a-2b}{3a+3b}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
Combine -b and b to get 0.
\frac{a^{2}}{\left(a-b\right)^{2}}\times \frac{2a-2b}{3a+3b}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
To raise \frac{a}{a-b} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
Multiply \frac{a^{2}}{\left(a-b\right)^{2}} times \frac{2a-2b}{3a+3b} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{a^{2}b}{\left(a^{2}-b^{2}\right)a}
Divide \frac{a^{2}}{a^{2}-b^{2}} by \frac{a}{b} by multiplying \frac{a^{2}}{a^{2}-b^{2}} by the reciprocal of \frac{a}{b}.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{ab}{a^{2}-b^{2}}
Cancel out a in both numerator and denominator.
\frac{a^{2}\left(2a-2b\right)}{3\left(a+b\right)\left(a-b\right)^{2}}-\frac{ab}{\left(a+b\right)\left(a-b\right)}
Factor \left(a-b\right)^{2}\left(3a+3b\right). Factor a^{2}-b^{2}.
\frac{-a^{2}\left(2a-2b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}-\frac{ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a+b\right)\left(a-b\right)^{2} and \left(a+b\right)\left(a-b\right) is -3\left(a+b\right)\left(a-b\right)^{2}. Multiply \frac{a^{2}\left(2a-2b\right)}{3\left(a+b\right)\left(a-b\right)^{2}} times \frac{-1}{-1}. Multiply \frac{ab}{\left(a+b\right)\left(a-b\right)} times \frac{-3\left(a-b\right)}{-3\left(a-b\right)}.
\frac{-a^{2}\left(2a-2b\right)-ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}
Since \frac{-a^{2}\left(2a-2b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}} and \frac{ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a^{3}+2a^{2}b+3a^{2}b-3ab^{2}}{-3\left(a+b\right)\left(a-b\right)^{2}}
Do the multiplications in -a^{2}\left(2a-2b\right)-ab\left(-3\right)\left(a-b\right).
\frac{-2a^{3}-3ab^{2}+5a^{2}b}{-3\left(a+b\right)\left(a-b\right)^{2}}
Combine like terms in -2a^{3}+2a^{2}b+3a^{2}b-3ab^{2}.
\frac{-2a^{3}-3ab^{2}+5a^{2}b}{-3a^{3}+3ab^{2}-3b^{3}+3ba^{2}}
Expand -3\left(a+b\right)\left(a-b\right)^{2}.
\frac{a\left(-a+b\right)\left(2a-3b\right)}{3\left(a+b\right)\left(a-b\right)\left(-a+b\right)}
Factor the expressions that are not already factored.
\frac{-a\left(a-b\right)\left(2a-3b\right)}{3\left(a+b\right)\left(a-b\right)\left(-a+b\right)}
Extract the negative sign in -a+b.
\frac{-a\left(2a-3b\right)}{3\left(a+b\right)\left(-a+b\right)}
Cancel out a-b in both numerator and denominator.
\frac{-2a^{2}+3ab}{-3a^{2}+3b^{2}}
Expand the expression.
\left(\frac{a}{a-b}\right)^{2}\times \frac{2a-2b}{3a+3b}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
Combine -b and b to get 0.
\frac{a^{2}}{\left(a-b\right)^{2}}\times \frac{2a-2b}{3a+3b}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
To raise \frac{a}{a-b} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{\frac{a^{2}}{a^{2}-b^{2}}}{\frac{a}{b}}
Multiply \frac{a^{2}}{\left(a-b\right)^{2}} times \frac{2a-2b}{3a+3b} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{a^{2}b}{\left(a^{2}-b^{2}\right)a}
Divide \frac{a^{2}}{a^{2}-b^{2}} by \frac{a}{b} by multiplying \frac{a^{2}}{a^{2}-b^{2}} by the reciprocal of \frac{a}{b}.
\frac{a^{2}\left(2a-2b\right)}{\left(a-b\right)^{2}\left(3a+3b\right)}-\frac{ab}{a^{2}-b^{2}}
Cancel out a in both numerator and denominator.
\frac{a^{2}\left(2a-2b\right)}{3\left(a+b\right)\left(a-b\right)^{2}}-\frac{ab}{\left(a+b\right)\left(a-b\right)}
Factor \left(a-b\right)^{2}\left(3a+3b\right). Factor a^{2}-b^{2}.
\frac{-a^{2}\left(2a-2b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}-\frac{ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a+b\right)\left(a-b\right)^{2} and \left(a+b\right)\left(a-b\right) is -3\left(a+b\right)\left(a-b\right)^{2}. Multiply \frac{a^{2}\left(2a-2b\right)}{3\left(a+b\right)\left(a-b\right)^{2}} times \frac{-1}{-1}. Multiply \frac{ab}{\left(a+b\right)\left(a-b\right)} times \frac{-3\left(a-b\right)}{-3\left(a-b\right)}.
\frac{-a^{2}\left(2a-2b\right)-ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}}
Since \frac{-a^{2}\left(2a-2b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}} and \frac{ab\left(-3\right)\left(a-b\right)}{-3\left(a+b\right)\left(a-b\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a^{3}+2a^{2}b+3a^{2}b-3ab^{2}}{-3\left(a+b\right)\left(a-b\right)^{2}}
Do the multiplications in -a^{2}\left(2a-2b\right)-ab\left(-3\right)\left(a-b\right).
\frac{-2a^{3}-3ab^{2}+5a^{2}b}{-3\left(a+b\right)\left(a-b\right)^{2}}
Combine like terms in -2a^{3}+2a^{2}b+3a^{2}b-3ab^{2}.
\frac{-2a^{3}-3ab^{2}+5a^{2}b}{-3a^{3}+3ab^{2}-3b^{3}+3ba^{2}}
Expand -3\left(a+b\right)\left(a-b\right)^{2}.
\frac{a\left(-a+b\right)\left(2a-3b\right)}{3\left(a+b\right)\left(a-b\right)\left(-a+b\right)}
Factor the expressions that are not already factored.
\frac{-a\left(a-b\right)\left(2a-3b\right)}{3\left(a+b\right)\left(a-b\right)\left(-a+b\right)}
Extract the negative sign in -a+b.
\frac{-a\left(2a-3b\right)}{3\left(a+b\right)\left(-a+b\right)}
Cancel out a-b in both numerator and denominator.
\frac{-2a^{2}+3ab}{-3a^{2}+3b^{2}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}