Evaluate
\frac{2b}{a^{2}}
Expand
\frac{2b}{a^{2}}
Share
Copied to clipboard
\frac{\frac{a-2b}{a^{2}+2ab}-\frac{\left(2b-a\right)^{2}}{\left(a^{2}-4b^{2}\right)\left(a+2b\right)}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Divide \frac{1}{a^{2}-4b^{2}} by \frac{a+2b}{\left(2b-a\right)^{2}} by multiplying \frac{1}{a^{2}-4b^{2}} by the reciprocal of \frac{a+2b}{\left(2b-a\right)^{2}}.
\frac{\frac{a-2b}{a\left(a+2b\right)}-\frac{\left(2b-a\right)^{2}}{\left(a-2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Factor a^{2}+2ab. Factor \left(a^{2}-4b^{2}\right)\left(a+2b\right).
\frac{\frac{\left(a-2b\right)\left(a-2b\right)\left(a+2b\right)^{2}}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}-\frac{\left(2b-a\right)^{2}a\left(a+2b\right)}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a+2b\right) and \left(a-2b\right)\left(a+2b\right)^{2} is a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}. Multiply \frac{a-2b}{a\left(a+2b\right)} times \frac{\left(a-2b\right)\left(a+2b\right)^{2}}{\left(a-2b\right)\left(a+2b\right)^{2}}. Multiply \frac{\left(2b-a\right)^{2}}{\left(a-2b\right)\left(a+2b\right)^{2}} times \frac{a\left(a+2b\right)}{a\left(a+2b\right)}.
\frac{\frac{\left(a-2b\right)\left(a-2b\right)\left(a+2b\right)^{2}-\left(2b-a\right)^{2}a\left(a+2b\right)}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Since \frac{\left(a-2b\right)\left(a-2b\right)\left(a+2b\right)^{2}}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}} and \frac{\left(2b-a\right)^{2}a\left(a+2b\right)}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{4}-8ab^{3}+2a^{3}b-4a^{2}b^{2}+8ab^{3}-2a^{3}b-4a^{2}b^{2}+16b^{4}-4b^{2}a^{2}-8b^{3}a+4ba^{3}+8b^{2}a^{2}-a^{4}-2a^{3}b}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Do the multiplications in \left(a-2b\right)\left(a-2b\right)\left(a+2b\right)^{2}-\left(2b-a\right)^{2}a\left(a+2b\right).
\frac{\frac{2a^{3}b-8ab^{3}-4a^{2}b^{2}+16b^{4}}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Combine like terms in a^{4}-8ab^{3}+2a^{3}b-4a^{2}b^{2}+8ab^{3}-2a^{3}b-4a^{2}b^{2}+16b^{4}-4b^{2}a^{2}-8b^{3}a+4ba^{3}+8b^{2}a^{2}-a^{4}-2a^{3}b.
\frac{\frac{2b\left(a+2b\right)\left(a-2b\right)^{2}}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Factor the expressions that are not already factored in \frac{2a^{3}b-8ab^{3}-4a^{2}b^{2}+16b^{4}}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}.
\frac{\frac{2b\left(a-2b\right)}{a\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Cancel out \left(a-2b\right)\left(a+2b\right) in both numerator and denominator.
\frac{2b\left(a-2b\right)\left(a^{2}+4ab+4b^{2}\right)}{a\left(a+2b\right)^{2}\left(a^{2}-2ab\right)}
Divide \frac{2b\left(a-2b\right)}{a\left(a+2b\right)^{2}} by \frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}} by multiplying \frac{2b\left(a-2b\right)}{a\left(a+2b\right)^{2}} by the reciprocal of \frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}.
\frac{2b\left(a-2b\right)\left(a+2b\right)^{2}}{\left(a-2b\right)a^{2}\left(a+2b\right)^{2}}
Factor the expressions that are not already factored.
\frac{2b}{a^{2}}
Cancel out \left(a-2b\right)\left(a+2b\right)^{2} in both numerator and denominator.
\frac{\frac{a-2b}{a^{2}+2ab}-\frac{\left(2b-a\right)^{2}}{\left(a^{2}-4b^{2}\right)\left(a+2b\right)}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Divide \frac{1}{a^{2}-4b^{2}} by \frac{a+2b}{\left(2b-a\right)^{2}} by multiplying \frac{1}{a^{2}-4b^{2}} by the reciprocal of \frac{a+2b}{\left(2b-a\right)^{2}}.
\frac{\frac{a-2b}{a\left(a+2b\right)}-\frac{\left(2b-a\right)^{2}}{\left(a-2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Factor a^{2}+2ab. Factor \left(a^{2}-4b^{2}\right)\left(a+2b\right).
\frac{\frac{\left(a-2b\right)\left(a-2b\right)\left(a+2b\right)^{2}}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}-\frac{\left(2b-a\right)^{2}a\left(a+2b\right)}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a+2b\right) and \left(a-2b\right)\left(a+2b\right)^{2} is a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}. Multiply \frac{a-2b}{a\left(a+2b\right)} times \frac{\left(a-2b\right)\left(a+2b\right)^{2}}{\left(a-2b\right)\left(a+2b\right)^{2}}. Multiply \frac{\left(2b-a\right)^{2}}{\left(a-2b\right)\left(a+2b\right)^{2}} times \frac{a\left(a+2b\right)}{a\left(a+2b\right)}.
\frac{\frac{\left(a-2b\right)\left(a-2b\right)\left(a+2b\right)^{2}-\left(2b-a\right)^{2}a\left(a+2b\right)}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Since \frac{\left(a-2b\right)\left(a-2b\right)\left(a+2b\right)^{2}}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}} and \frac{\left(2b-a\right)^{2}a\left(a+2b\right)}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{4}-8ab^{3}+2a^{3}b-4a^{2}b^{2}+8ab^{3}-2a^{3}b-4a^{2}b^{2}+16b^{4}-4b^{2}a^{2}-8b^{3}a+4ba^{3}+8b^{2}a^{2}-a^{4}-2a^{3}b}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Do the multiplications in \left(a-2b\right)\left(a-2b\right)\left(a+2b\right)^{2}-\left(2b-a\right)^{2}a\left(a+2b\right).
\frac{\frac{2a^{3}b-8ab^{3}-4a^{2}b^{2}+16b^{4}}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Combine like terms in a^{4}-8ab^{3}+2a^{3}b-4a^{2}b^{2}+8ab^{3}-2a^{3}b-4a^{2}b^{2}+16b^{4}-4b^{2}a^{2}-8b^{3}a+4ba^{3}+8b^{2}a^{2}-a^{4}-2a^{3}b.
\frac{\frac{2b\left(a+2b\right)\left(a-2b\right)^{2}}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Factor the expressions that are not already factored in \frac{2a^{3}b-8ab^{3}-4a^{2}b^{2}+16b^{4}}{a\left(a-2b\right)\left(a+2b\right)\left(a+2b\right)^{2}}.
\frac{\frac{2b\left(a-2b\right)}{a\left(a+2b\right)^{2}}}{\frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}}
Cancel out \left(a-2b\right)\left(a+2b\right) in both numerator and denominator.
\frac{2b\left(a-2b\right)\left(a^{2}+4ab+4b^{2}\right)}{a\left(a+2b\right)^{2}\left(a^{2}-2ab\right)}
Divide \frac{2b\left(a-2b\right)}{a\left(a+2b\right)^{2}} by \frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}} by multiplying \frac{2b\left(a-2b\right)}{a\left(a+2b\right)^{2}} by the reciprocal of \frac{a^{2}-2ab}{a^{2}+4ab+4b^{2}}.
\frac{2b\left(a-2b\right)\left(a+2b\right)^{2}}{\left(a-2b\right)a^{2}\left(a+2b\right)^{2}}
Factor the expressions that are not already factored.
\frac{2b}{a^{2}}
Cancel out \left(a-2b\right)\left(a+2b\right)^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}