Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a-2}{\left(a-2\right)\left(a+2\right)}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Factor the expressions that are not already factored in \frac{a-2}{a^{2}-4}.
\frac{\frac{1}{a+2}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Cancel out a-2 in both numerator and denominator.
\frac{\frac{1}{a+2}-\frac{a-1}{a\left(a-2\right)}}{\frac{1}{a-2}}
Factor a^{2}-2a.
\frac{\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}-\frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a\left(a-2\right) is a\left(a-2\right)\left(a+2\right). Multiply \frac{1}{a+2} times \frac{a\left(a-2\right)}{a\left(a-2\right)}. Multiply \frac{a-1}{a\left(a-2\right)} times \frac{a+2}{a+2}.
\frac{\frac{a\left(a-2\right)-\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Since \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)} and \frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-2a-a^{2}-2a+a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Do the multiplications in a\left(a-2\right)-\left(a-1\right)\left(a+2\right).
\frac{\frac{-3a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Combine like terms in a^{2}-2a-a^{2}-2a+a+2.
\frac{\left(-3a+2\right)\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}
Divide \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} by \frac{1}{a-2} by multiplying \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{1}{a-2}.
\frac{-3a+2}{a\left(a+2\right)}
Cancel out a-2 in both numerator and denominator.
\frac{-3a+2}{a^{2}+2a}
Use the distributive property to multiply a by a+2.
\frac{\frac{a-2}{\left(a-2\right)\left(a+2\right)}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Factor the expressions that are not already factored in \frac{a-2}{a^{2}-4}.
\frac{\frac{1}{a+2}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Cancel out a-2 in both numerator and denominator.
\frac{\frac{1}{a+2}-\frac{a-1}{a\left(a-2\right)}}{\frac{1}{a-2}}
Factor a^{2}-2a.
\frac{\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}-\frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a\left(a-2\right) is a\left(a-2\right)\left(a+2\right). Multiply \frac{1}{a+2} times \frac{a\left(a-2\right)}{a\left(a-2\right)}. Multiply \frac{a-1}{a\left(a-2\right)} times \frac{a+2}{a+2}.
\frac{\frac{a\left(a-2\right)-\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Since \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)} and \frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-2a-a^{2}-2a+a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Do the multiplications in a\left(a-2\right)-\left(a-1\right)\left(a+2\right).
\frac{\frac{-3a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Combine like terms in a^{2}-2a-a^{2}-2a+a+2.
\frac{\left(-3a+2\right)\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}
Divide \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} by \frac{1}{a-2} by multiplying \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{1}{a-2}.
\frac{-3a+2}{a\left(a+2\right)}
Cancel out a-2 in both numerator and denominator.
\frac{-3a+2}{a^{2}+2a}
Use the distributive property to multiply a by a+2.