Evaluate
\frac{2-3a}{a\left(a+2\right)}
Expand
\frac{2-3a}{a\left(a+2\right)}
Share
Copied to clipboard
\frac{\frac{a-2}{\left(a-2\right)\left(a+2\right)}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Factor the expressions that are not already factored in \frac{a-2}{a^{2}-4}.
\frac{\frac{1}{a+2}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Cancel out a-2 in both numerator and denominator.
\frac{\frac{1}{a+2}-\frac{a-1}{a\left(a-2\right)}}{\frac{1}{a-2}}
Factor a^{2}-2a.
\frac{\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}-\frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a\left(a-2\right) is a\left(a-2\right)\left(a+2\right). Multiply \frac{1}{a+2} times \frac{a\left(a-2\right)}{a\left(a-2\right)}. Multiply \frac{a-1}{a\left(a-2\right)} times \frac{a+2}{a+2}.
\frac{\frac{a\left(a-2\right)-\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Since \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)} and \frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-2a-a^{2}-2a+a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Do the multiplications in a\left(a-2\right)-\left(a-1\right)\left(a+2\right).
\frac{\frac{-3a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Combine like terms in a^{2}-2a-a^{2}-2a+a+2.
\frac{\left(-3a+2\right)\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}
Divide \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} by \frac{1}{a-2} by multiplying \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{1}{a-2}.
\frac{-3a+2}{a\left(a+2\right)}
Cancel out a-2 in both numerator and denominator.
\frac{-3a+2}{a^{2}+2a}
Use the distributive property to multiply a by a+2.
\frac{\frac{a-2}{\left(a-2\right)\left(a+2\right)}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Factor the expressions that are not already factored in \frac{a-2}{a^{2}-4}.
\frac{\frac{1}{a+2}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Cancel out a-2 in both numerator and denominator.
\frac{\frac{1}{a+2}-\frac{a-1}{a\left(a-2\right)}}{\frac{1}{a-2}}
Factor a^{2}-2a.
\frac{\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}-\frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a\left(a-2\right) is a\left(a-2\right)\left(a+2\right). Multiply \frac{1}{a+2} times \frac{a\left(a-2\right)}{a\left(a-2\right)}. Multiply \frac{a-1}{a\left(a-2\right)} times \frac{a+2}{a+2}.
\frac{\frac{a\left(a-2\right)-\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Since \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)} and \frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-2a-a^{2}-2a+a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Do the multiplications in a\left(a-2\right)-\left(a-1\right)\left(a+2\right).
\frac{\frac{-3a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Combine like terms in a^{2}-2a-a^{2}-2a+a+2.
\frac{\left(-3a+2\right)\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}
Divide \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} by \frac{1}{a-2} by multiplying \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{1}{a-2}.
\frac{-3a+2}{a\left(a+2\right)}
Cancel out a-2 in both numerator and denominator.
\frac{-3a+2}{a^{2}+2a}
Use the distributive property to multiply a by a+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}