Evaluate
a
Differentiate w.r.t. a
1
Share
Copied to clipboard
\frac{\frac{a-2}{a+2}+\frac{8a}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}}
Factor a^{2}-4.
\frac{\frac{\left(a-2\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}+\frac{8a}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and \left(a-2\right)\left(a+2\right) is \left(a-2\right)\left(a+2\right). Multiply \frac{a-2}{a+2} times \frac{a-2}{a-2}.
\frac{\frac{\left(a-2\right)\left(a-2\right)+8a}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}}
Since \frac{\left(a-2\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{8a}{\left(a-2\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}-2a-2a+4+8a}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}}
Do the multiplications in \left(a-2\right)\left(a-2\right)+8a.
\frac{\frac{a^{2}+4a+4}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}}
Combine like terms in a^{2}-2a-2a+4+8a.
\frac{\frac{\left(a+2\right)^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}}
Factor the expressions that are not already factored in \frac{a^{2}+4a+4}{\left(a-2\right)\left(a+2\right)}.
\frac{\frac{a+2}{a-2}}{\frac{a+2}{a^{2}-2a}}
Cancel out a+2 in both numerator and denominator.
\frac{\left(a+2\right)\left(a^{2}-2a\right)}{\left(a-2\right)\left(a+2\right)}
Divide \frac{a+2}{a-2} by \frac{a+2}{a^{2}-2a} by multiplying \frac{a+2}{a-2} by the reciprocal of \frac{a+2}{a^{2}-2a}.
\frac{a^{2}-2a}{a-2}
Cancel out a+2 in both numerator and denominator.
\frac{a\left(a-2\right)}{a-2}
Factor the expressions that are not already factored.
a
Cancel out a-2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a-2}{a+2}+\frac{8a}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}})
Factor a^{2}-4.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a-2\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}+\frac{8a}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and \left(a-2\right)\left(a+2\right) is \left(a-2\right)\left(a+2\right). Multiply \frac{a-2}{a+2} times \frac{a-2}{a-2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a-2\right)\left(a-2\right)+8a}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}})
Since \frac{\left(a-2\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{8a}{\left(a-2\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{2}-2a-2a+4+8a}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}})
Do the multiplications in \left(a-2\right)\left(a-2\right)+8a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{2}+4a+4}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}})
Combine like terms in a^{2}-2a-2a+4+8a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a+2\right)^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{a+2}{a^{2}-2a}})
Factor the expressions that are not already factored in \frac{a^{2}+4a+4}{\left(a-2\right)\left(a+2\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a+2}{a-2}}{\frac{a+2}{a^{2}-2a}})
Cancel out a+2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+2\right)\left(a^{2}-2a\right)}{\left(a-2\right)\left(a+2\right)})
Divide \frac{a+2}{a-2} by \frac{a+2}{a^{2}-2a} by multiplying \frac{a+2}{a-2} by the reciprocal of \frac{a+2}{a^{2}-2a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-2a}{a-2})
Cancel out a+2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)}{a-2})
Factor the expressions that are not already factored in \frac{a^{2}-2a}{a-2}.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Cancel out a-2 in both numerator and denominator.
a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}