Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{aa}{ab}+\frac{bb}{ab}\right)^{2}-\left(\frac{a}{b}-\frac{b}{a}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and a is ab. Multiply \frac{a}{b} times \frac{a}{a}. Multiply \frac{b}{a} times \frac{b}{b}.
\left(\frac{aa+bb}{ab}\right)^{2}-\left(\frac{a}{b}-\frac{b}{a}\right)^{2}
Since \frac{aa}{ab} and \frac{bb}{ab} have the same denominator, add them by adding their numerators.
\left(\frac{a^{2}+b^{2}}{ab}\right)^{2}-\left(\frac{a}{b}-\frac{b}{a}\right)^{2}
Do the multiplications in aa+bb.
\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(ab\right)^{2}}-\left(\frac{a}{b}-\frac{b}{a}\right)^{2}
To raise \frac{a^{2}+b^{2}}{ab} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(ab\right)^{2}}-\left(\frac{aa}{ab}-\frac{bb}{ab}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and a is ab. Multiply \frac{a}{b} times \frac{a}{a}. Multiply \frac{b}{a} times \frac{b}{b}.
\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(ab\right)^{2}}-\left(\frac{aa-bb}{ab}\right)^{2}
Since \frac{aa}{ab} and \frac{bb}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(ab\right)^{2}}-\left(\frac{a^{2}-b^{2}}{ab}\right)^{2}
Do the multiplications in aa-bb.
\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(ab\right)^{2}}-\frac{\left(a^{2}-b^{2}\right)^{2}}{\left(ab\right)^{2}}
To raise \frac{a^{2}-b^{2}}{ab} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(ab\right)^{2}}-\frac{\left(a^{2}-b^{2}\right)^{2}}{a^{2}b^{2}}
Expand \left(ab\right)^{2}.
\frac{\left(a^{2}+b^{2}\right)^{2}}{a^{2}b^{2}}-\frac{\left(a^{2}-b^{2}\right)^{2}}{a^{2}b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Expand \left(ab\right)^{2}.
\frac{\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}}{a^{2}b^{2}}
Since \frac{\left(a^{2}+b^{2}\right)^{2}}{a^{2}b^{2}} and \frac{\left(a^{2}-b^{2}\right)^{2}}{a^{2}b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{4}+2a^{2}b^{2}+b^{4}-a^{4}+2a^{2}b^{2}-b^{4}}{a^{2}b^{2}}
Do the multiplications in \left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}.
\frac{4a^{2}b^{2}}{a^{2}b^{2}}
Combine like terms in a^{4}+2a^{2}b^{2}+b^{4}-a^{4}+2a^{2}b^{2}-b^{4}.
4
Cancel out a^{2}b^{2} in both numerator and denominator.