Evaluate
\frac{40a}{87b}
Expand
\frac{40a}{87b}
Graph
Share
Copied to clipboard
\frac{\frac{3a}{3b}+\frac{2a}{3b}}{\frac{\frac{3x}{8}}{\frac{x}{9}}+\frac{1}{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and 3b is 3b. Multiply \frac{a}{b} times \frac{3}{3}.
\frac{\frac{3a+2a}{3b}}{\frac{\frac{3x}{8}}{\frac{x}{9}}+\frac{1}{4}}
Since \frac{3a}{3b} and \frac{2a}{3b} have the same denominator, add them by adding their numerators.
\frac{\frac{5a}{3b}}{\frac{\frac{3x}{8}}{\frac{x}{9}}+\frac{1}{4}}
Combine like terms in 3a+2a.
\frac{\frac{5a}{3b}}{\frac{3x\times 9}{8x}+\frac{1}{4}}
Divide \frac{3x}{8} by \frac{x}{9} by multiplying \frac{3x}{8} by the reciprocal of \frac{x}{9}.
\frac{\frac{5a}{3b}}{\frac{3\times 9}{8}+\frac{1}{4}}
Cancel out x in both numerator and denominator.
\frac{\frac{5a}{3b}}{\frac{27}{8}+\frac{1}{4}}
Multiply 3 and 9 to get 27.
\frac{\frac{5a}{3b}}{\frac{27}{8}+\frac{2}{8}}
Least common multiple of 8 and 4 is 8. Convert \frac{27}{8} and \frac{1}{4} to fractions with denominator 8.
\frac{\frac{5a}{3b}}{\frac{27+2}{8}}
Since \frac{27}{8} and \frac{2}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{5a}{3b}}{\frac{29}{8}}
Add 27 and 2 to get 29.
\frac{5a\times 8}{3b\times 29}
Divide \frac{5a}{3b} by \frac{29}{8} by multiplying \frac{5a}{3b} by the reciprocal of \frac{29}{8}.
\frac{40a}{3b\times 29}
Multiply 5 and 8 to get 40.
\frac{40a}{87b}
Multiply 3 and 29 to get 87.
\frac{\frac{3a}{3b}+\frac{2a}{3b}}{\frac{\frac{3x}{8}}{\frac{x}{9}}+\frac{1}{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and 3b is 3b. Multiply \frac{a}{b} times \frac{3}{3}.
\frac{\frac{3a+2a}{3b}}{\frac{\frac{3x}{8}}{\frac{x}{9}}+\frac{1}{4}}
Since \frac{3a}{3b} and \frac{2a}{3b} have the same denominator, add them by adding their numerators.
\frac{\frac{5a}{3b}}{\frac{\frac{3x}{8}}{\frac{x}{9}}+\frac{1}{4}}
Combine like terms in 3a+2a.
\frac{\frac{5a}{3b}}{\frac{3x\times 9}{8x}+\frac{1}{4}}
Divide \frac{3x}{8} by \frac{x}{9} by multiplying \frac{3x}{8} by the reciprocal of \frac{x}{9}.
\frac{\frac{5a}{3b}}{\frac{3\times 9}{8}+\frac{1}{4}}
Cancel out x in both numerator and denominator.
\frac{\frac{5a}{3b}}{\frac{27}{8}+\frac{1}{4}}
Multiply 3 and 9 to get 27.
\frac{\frac{5a}{3b}}{\frac{27}{8}+\frac{2}{8}}
Least common multiple of 8 and 4 is 8. Convert \frac{27}{8} and \frac{1}{4} to fractions with denominator 8.
\frac{\frac{5a}{3b}}{\frac{27+2}{8}}
Since \frac{27}{8} and \frac{2}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{5a}{3b}}{\frac{29}{8}}
Add 27 and 2 to get 29.
\frac{5a\times 8}{3b\times 29}
Divide \frac{5a}{3b} by \frac{29}{8} by multiplying \frac{5a}{3b} by the reciprocal of \frac{29}{8}.
\frac{40a}{3b\times 29}
Multiply 5 and 8 to get 40.
\frac{40a}{87b}
Multiply 3 and 29 to get 87.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}