Evaluate
\frac{a}{a+b}
Expand
\frac{a}{a+b}
Share
Copied to clipboard
\left(\frac{a\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)}-\frac{\left(2a+2b\right)\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)}+\frac{a}{b}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2b and a+2b is \left(a-2b\right)\left(a+2b\right). Multiply \frac{a}{a-2b} times \frac{a+2b}{a+2b}. Multiply \frac{2a+2b}{a+2b} times \frac{a-2b}{a-2b}.
\left(\frac{a\left(a+2b\right)-\left(2a+2b\right)\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)}+\frac{a}{b}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Since \frac{a\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)} and \frac{\left(2a+2b\right)\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{a^{2}+2ab-2a^{2}+4ab-2ba+4b^{2}}{\left(a-2b\right)\left(a+2b\right)}+\frac{a}{b}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Do the multiplications in a\left(a+2b\right)-\left(2a+2b\right)\left(a-2b\right).
\left(\frac{-a^{2}+4b^{2}+4ab}{\left(a-2b\right)\left(a+2b\right)}+\frac{a}{b}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Combine like terms in a^{2}+2ab-2a^{2}+4ab-2ba+4b^{2}.
\left(\frac{\left(-a^{2}+4b^{2}+4ab\right)b}{b\left(a-2b\right)\left(a+2b\right)}+\frac{a\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2b\right)\left(a+2b\right) and b is b\left(a-2b\right)\left(a+2b\right). Multiply \frac{-a^{2}+4b^{2}+4ab}{\left(a-2b\right)\left(a+2b\right)} times \frac{b}{b}. Multiply \frac{a}{b} times \frac{\left(a-2b\right)\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)}.
\left(\frac{\left(-a^{2}+4b^{2}+4ab\right)b+a\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Since \frac{\left(-a^{2}+4b^{2}+4ab\right)b}{b\left(a-2b\right)\left(a+2b\right)} and \frac{a\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)} have the same denominator, add them by adding their numerators.
\left(\frac{-a^{2}b+4b^{3}+4ab^{2}+a^{3}+2a^{2}b-2a^{2}b-4ab^{2}}{b\left(a-2b\right)\left(a+2b\right)}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Do the multiplications in \left(-a^{2}+4b^{2}+4ab\right)b+a\left(a-2b\right)\left(a+2b\right).
\left(\frac{-a^{2}b+4b^{3}+a^{3}}{b\left(a-2b\right)\left(a+2b\right)}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Combine like terms in -a^{2}b+4b^{3}+4ab^{2}+a^{3}+2a^{2}b-2a^{2}b-4ab^{2}.
\left(\frac{-a^{2}b+4b^{3}+a^{3}}{b\left(a-2b\right)\left(a+2b\right)}+\frac{b\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)}\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)}.
\frac{-a^{2}b+4b^{3}+a^{3}+b\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)}\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Since \frac{-a^{2}b+4b^{3}+a^{3}}{b\left(a-2b\right)\left(a+2b\right)} and \frac{b\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)} have the same denominator, add them by adding their numerators.
\frac{-a^{2}b+4b^{3}+a^{3}+ba^{2}+2b^{2}a-2b^{2}a-4b^{3}}{b\left(a-2b\right)\left(a+2b\right)}\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Do the multiplications in -a^{2}b+4b^{3}+a^{3}+b\left(a-2b\right)\left(a+2b\right).
\frac{a^{3}}{b\left(a-2b\right)\left(a+2b\right)}\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Combine like terms in -a^{2}b+4b^{3}+a^{3}+ba^{2}+2b^{2}a-2b^{2}a-4b^{3}.
\frac{a^{3}\left(a^{2}b-4b^{3}\right)}{b\left(a-2b\right)\left(a+2b\right)\left(a^{3}+a^{2}b\right)}
Multiply \frac{a^{3}}{b\left(a-2b\right)\left(a+2b\right)} times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b} by multiplying numerator times numerator and denominator times denominator.
\frac{b\left(a-2b\right)\left(a+2b\right)a^{3}}{b\left(a+b\right)\left(a-2b\right)\left(a+2b\right)a^{2}}
Factor the expressions that are not already factored.
\frac{a}{a+b}
Cancel out b\left(a-2b\right)\left(a+2b\right)a^{2} in both numerator and denominator.
\left(\frac{a\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)}-\frac{\left(2a+2b\right)\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)}+\frac{a}{b}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2b and a+2b is \left(a-2b\right)\left(a+2b\right). Multiply \frac{a}{a-2b} times \frac{a+2b}{a+2b}. Multiply \frac{2a+2b}{a+2b} times \frac{a-2b}{a-2b}.
\left(\frac{a\left(a+2b\right)-\left(2a+2b\right)\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)}+\frac{a}{b}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Since \frac{a\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)} and \frac{\left(2a+2b\right)\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{a^{2}+2ab-2a^{2}+4ab-2ba+4b^{2}}{\left(a-2b\right)\left(a+2b\right)}+\frac{a}{b}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Do the multiplications in a\left(a+2b\right)-\left(2a+2b\right)\left(a-2b\right).
\left(\frac{-a^{2}+4b^{2}+4ab}{\left(a-2b\right)\left(a+2b\right)}+\frac{a}{b}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Combine like terms in a^{2}+2ab-2a^{2}+4ab-2ba+4b^{2}.
\left(\frac{\left(-a^{2}+4b^{2}+4ab\right)b}{b\left(a-2b\right)\left(a+2b\right)}+\frac{a\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2b\right)\left(a+2b\right) and b is b\left(a-2b\right)\left(a+2b\right). Multiply \frac{-a^{2}+4b^{2}+4ab}{\left(a-2b\right)\left(a+2b\right)} times \frac{b}{b}. Multiply \frac{a}{b} times \frac{\left(a-2b\right)\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)}.
\left(\frac{\left(-a^{2}+4b^{2}+4ab\right)b+a\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Since \frac{\left(-a^{2}+4b^{2}+4ab\right)b}{b\left(a-2b\right)\left(a+2b\right)} and \frac{a\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)} have the same denominator, add them by adding their numerators.
\left(\frac{-a^{2}b+4b^{3}+4ab^{2}+a^{3}+2a^{2}b-2a^{2}b-4ab^{2}}{b\left(a-2b\right)\left(a+2b\right)}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Do the multiplications in \left(-a^{2}+4b^{2}+4ab\right)b+a\left(a-2b\right)\left(a+2b\right).
\left(\frac{-a^{2}b+4b^{3}+a^{3}}{b\left(a-2b\right)\left(a+2b\right)}+1\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Combine like terms in -a^{2}b+4b^{3}+4ab^{2}+a^{3}+2a^{2}b-2a^{2}b-4ab^{2}.
\left(\frac{-a^{2}b+4b^{3}+a^{3}}{b\left(a-2b\right)\left(a+2b\right)}+\frac{b\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)}\right)\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)}.
\frac{-a^{2}b+4b^{3}+a^{3}+b\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)}\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Since \frac{-a^{2}b+4b^{3}+a^{3}}{b\left(a-2b\right)\left(a+2b\right)} and \frac{b\left(a-2b\right)\left(a+2b\right)}{b\left(a-2b\right)\left(a+2b\right)} have the same denominator, add them by adding their numerators.
\frac{-a^{2}b+4b^{3}+a^{3}+ba^{2}+2b^{2}a-2b^{2}a-4b^{3}}{b\left(a-2b\right)\left(a+2b\right)}\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Do the multiplications in -a^{2}b+4b^{3}+a^{3}+b\left(a-2b\right)\left(a+2b\right).
\frac{a^{3}}{b\left(a-2b\right)\left(a+2b\right)}\times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b}
Combine like terms in -a^{2}b+4b^{3}+a^{3}+ba^{2}+2b^{2}a-2b^{2}a-4b^{3}.
\frac{a^{3}\left(a^{2}b-4b^{3}\right)}{b\left(a-2b\right)\left(a+2b\right)\left(a^{3}+a^{2}b\right)}
Multiply \frac{a^{3}}{b\left(a-2b\right)\left(a+2b\right)} times \frac{a^{2}b-4b^{3}}{a^{3}+a^{2}b} by multiplying numerator times numerator and denominator times denominator.
\frac{b\left(a-2b\right)\left(a+2b\right)a^{3}}{b\left(a+b\right)\left(a-2b\right)\left(a+2b\right)a^{2}}
Factor the expressions that are not already factored.
\frac{a}{a+b}
Cancel out b\left(a-2b\right)\left(a+2b\right)a^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}